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Abstract 
 
Accurate predictions from models based on physical principles are the ultimate metric of our 
biophysical understanding. While there has been stunning progress towards structure prediction, 
quantitative prediction of enzyme function has remained challenging. Realizing this goal will 
require large numbers of quantitative measurements of rate and binding constants, and the use of 
these ground-truth datasets to guide the development and testing of these quantitative models. 
Ground truth data more closely linked to the underlying physical forces are also desired. Here we 
describe technological advances that enable both types of ground truth measurements. These 
advances allow classic models to be tested, provide novel mechanistic insights, and place us on 
the path toward a predictive understanding of enzyme structure and function. 
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Introduction 

Scientists can now predict and design protein structure with ångström accuracy, a triumph 
culminating from decades of experimental and computational efforts [1,2]. In this perspective, we 
describe why the approaches that have been so successful in protein design are unlikely to lead to 
analogously predictive models for protein function, and we introduce concepts and experimental 
approaches that address these limitations and move us toward the ultimate goals of accurately and 
quantitatively predicting and designing function. 

Structure broadly and deeply informs our understanding of function—consider the striking 
visualizations of motor proteins that have revealed the lever arms of myosin, dynein, and kinesin 
and their ATP-dependent power strokes [3], and the myriad of proteins whose shape is integral to 
their function, like the β-clamp that encircles DNA to enhance polymerase processivity [4]. 
Nevertheless, more than structure is needed to describe, understand, and quantitatively predict 
function. Indeed, many proteins with the same fold differ in function, quantitively and even 
qualitatively [5]. 

Function involves a series of states, such as the conformations through the myosin reaction cycle 
or the states in chemical reactions catalyzed by enzymes (substrate binding (E•S), transition state 
(E•S‡), product complex (E•P), and release (E + P) to regenerate free enzyme ready for another 
round of catalysis). A minimal description of protein function therefore requires describing these 
states and determining the rate and equilibrium constants that define their transition probabilities 
and relative populations, respectively. 

But still more is required to understand and ultimately predict and design new functions—an 
ability to specify the functional consequences of sequence changes. Enzymes are large, with 
residues beyond the active site required for function, minimally to fold into and stabilize the correct 
binding and active site configurations [6]. But regions far from the active site can also have 
considerable functional consequences [7], as evidenced by allosteric modulation [8,9] and remote 
mutational effects frequently identified in high-throughput screens [10–12]. To find and describe 
which residues, sets of residues, and substructures affect function, as well as the particular aspects 
of function that are affected, we need approaches to systematically interrogate all residues and to 
determine the effects of perturbing them through each step of the enzyme’s reaction cycle. In other 
words, we need to measure many rate and equilibrium constants for many mutants. Here, we 
highlight a breakthrough approach that allows these measurements to be made. 

In principle, with sufficient empirical data, machine and deep learning approaches could be 
employed to provide accurate, predictive models of enzyme function. However, sequence space is 
vast—so vast that nature has only sampled a miniscule corner of it [13]. And whereas pairwise 
residue information is largely sufficient to predict protein structure [14], enzyme function is much 
more complex, with multiple distal residues exerting functional effects on one another. These 
effects correspond mathematically to higher-order terms to account for the effects from 
combinations of multiple residues, and are thusterms that are needed to quantitatively describe 
function. Because of this complexity, vast amounts of data would likely be required to define the 
relationship between sequence and function, and we suspect that the scale of data needed to predict 
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enzyme function via machine- and deep-learning approaches may greatly exceed what is 
measurable, even with recent breakthroughs. 

In contrast, physics-based approaches are scalable, so that simple rules can be used to describe the 
behavior of arbitrarily complex systems [15,16]. These models relate atomic forces and motions, 
captured by the preferred substates in conformational ensembles, to thermodynamic and kinetic 
constants. From the perspective of statistical mechanics, the constants that define function arise 
from the energy landscapes that define an ensemble of enzyme substates and the transition and 
reaction probabilities for each substate, represented mathematically in Figure 1 [17,18]. 

Thus, we need to go beyond structures to ensembles, and beyond structure–function relationships 
to ensemble–function relationships, and we will need to use experimental determinations of these 
relationships to test and build the physics-based models needed to quantitatively and accurately 
predict enzyme function. Here, we describe emerging X-ray crystallographic approaches that can 
provide this needed ensemble information. 

Current design efforts yield enzymes that require cycles of randomization and selection to begin 
to approach natural enzymes. Perhaps the tortoise rather than the hare is needed to win this race 
[19], wherein large-scale quantitative and in-depth data are first collected and used to test and build 
models that will ultimately have the accuracy to predict and design enzyme function. We expect 
accurate enzyme functional prediction to remain a grand challenge of 21st century biophysics—it 
is a still-distant goal. Systematic blind tests of models built from large-scale quantitative data 
provide a promising, and perhaps necessary, path forward. 

 

1. Ground truths are needed for model development 

To develop and establish a model, “ground truths” are needed. Ground truths are experimental data 
in a form that can be predicted by and thus compared to a model; without ground truths there is no 
way to definitively test a model. 
 
The most sophisticated models in enzymology combine quantum mechanics and molecular 
mechanics (QM/MM) and have been used to predict reaction rate constants [20,21]. However, in 
nearly all instances the rate constants predicted by QM/MM were already measured, and thus do 
not represent actual predictions that foretell a future event and that are incontrovertibly 
independent of the existing experimental findings [22]. The importance of predictions prior to 
measurement is underscored by the fact that the inability of protein folding models of the 1970s–
90s to predict structures was not apparent until they were challenged with truly blinded predictions 
(CASP, Critical Assessment of Structure Prediction); [1,23,24]). Ultimately, the algorithms and 
models that accurately predict structure were built using information from the large number of 
solved structures in the Protein Data Bank (PDB) [25], mining this information, and combining it 
with vast information from sequence conservation along with simplified energy potentials or rules 
derived via machine or deep learning [14,26–29,2].  
 
Analogously, we need many measurements of kinetic and thermodynamic constants as ground 
truths to build and test predictive models of enzyme function, but current approaches are severely 
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limited in their ability to deliver these essential data. Changes in residues throughout an enzyme 
can affect kinetic and thermodynamic constants and combined changes will often not give additive 
effects; from a mathematical perspective, this property corresponds to a need for many terms in a 
model that can predict the effects from all sequence changes. With only a handful of 
measurements, there will not be enough data to constrain the model—from a simple algebraic 
standpoint, one needs the number of measurements to equal or exceed the number of variables in 
an equation to solve for those variables. While we are unlikely to ever obtain sufficient 
measurements to fully define all of the variables of a master equation for function, we need many 
measurements to guide model development, and then many predictions from these models—
followed by many additional quantitative measurements—to provide a robust test of the models.  
 
Structural ensembles can provide orthogonal ground truths. The relative occupancy of different 
conformational states reflects a balance of physical forces and thus provides ground truths that can 
be used as tests of models that account for these forces. Of further value, each ensemble provides 
a wealth of data—the distribution of states for each residue and around each backbone and 
sidechain bond, as well as information about their hydrogen bonds and electrostatic and van der 
Waals interactions. In contrast, average structures can be predicted without these “details” being 
accurate, as evidenced by the rather simple force models present in successful Rosetta structural 
prediction algorithms [26,30]. 
 
The sections that follow describe recent advances in obtaining these ground truths for enzyme 
function. 
 
2. The need for quantitative enzymology at scale 
 
Recognizing the need for an immense amount of data to describe and understand enzymes and 
their function, high-throughput approaches have been used to interrogate up to ~106 sequence 
variants in parallel. In particular deep mutational scanning (DMS) approaches have been applied 
to all possible single mutants for dozens of unique proteins [31,32].  
 
Some DMS studies report the effects of mutations in a particular protein on organismal fitness, a 
convolution of multiple factors [33,34]. These experiments can also be designed to report more 
specific aspects of function, including catalytic efficiency, substrate specificity, stability, and 
interaction with binding partners [10,11,35–39]. While valuable, and sometimes of immediate 
practical benefit, these functional readouts still represent a convolution of contributing factors. For 
example, for observed catalytic function a mutant enzyme down 100-fold in catalysis can be 99% 
unfolded, 99% partitioned to an alternative misfolded state, have a misaligned catalytic residue, 
have a binding interaction removed, or exhibit some combination of these factors. Thus, these 
functional readouts fall short of delivering the needed ground truths. 
 
At the other end of the spectrum, traditional enzymology provides kinetic and thermodynamic 
constants that describe the catalytic cycle and have been combined with incisive mechanistic 
probes (e.g., alternative substrates, isotope effects, etc.) to provide deep mechanistic insights. 
However, these approaches are only feasible for a small number of variants of each enzyme. Past 
efforts to quantify properties of many variants in T4 lysozyme, pyruvate kinase, and β-glucosidase 
B underscore that data for many mutants can be collected when heroic means are employed [40–
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43]. But even in these cases, the time and cost to carry out the additional measurements required 
to probe the mechanistic origins of the observed effects would be prohibitive. 
 
It is hard to identify a discipline that has not been transformed at one time or another by a 
breakthrough technology. Here, technology was needed to efficiently provide the rich and 
quantitative data of traditional enzymology at a much larger scale for many variants and multiple 
enzymes.  
 
Quantitative enzymology on a chip 
 
Advances in microfluidics provided the opportunity to marry the strengths of traditional 
enzymology with automated high-throughput data collection and bring enzymology into the 
genomic age [44–46]. High-throughput microfluidic enzyme kinetics (HT-MEK; Figure 2) allows 
1500 enzyme variants to be produced, purified, and subjected to multiple quantitative assays in 
days, at a miniscule fraction of the cost of traditional approaches [47].  
 
Figure 2 outlines how HT-MEK experiments are performed. HT-MEK uses a microfluidic device 
with chambers aligned to a DNA microarray of 1500 isolated variant plasmids (Figure 2a). 
Expression and purification of enzyme variants is carried out in parallel, so that all 1500 enzymes 
can be purified, quantified, recruited to antibody-patterned surfaces, and ready for assay in hours 
(Figure 2b). Pneumatically controlled valves allow the user to protect the enzyme from flow-
induced shear forces while the expression solution is removed and an assay solution containing 
substrate is added to the chambers, followed by opening of the valves to simultaneously initiate 
reactions in all chambers (Figure 2c). Product formation is quantified over time via fluorescence, 
either directly using a fluorogenic substrate or indirectly using a coupled assay (Figure 2c). Once 
complete, reaction product is flowed out and a new substrate stock is flowed in so that a series of 
assays can be performed iteratively. Figure 2d shows example Michaelis-Menten and inhibition 
curves obtained in HT-MEK experiments. 
 
Each HT-MEK device can be used to carry out tens of reactions and a single researcher can 
fabricate tens of devices in a day. These properties make it possible to carry out hundreds of 
assays—with multiple substrates, inhibitors, and solution conditions, as used traditionally in 
mechanistic enzymology— but to do so across thousands of enzyme variants and to do so in a few 
weeks. Thus, the properties of HT-MEK allow measurement of many kinetic and thermodynamic 
constants that provide valuable information about an enzyme and can serve as ground truths for 
model testing. 
 
For PafA [48], our test case, we obtained >6000 kinetic and thermodynamic constants from 
>650,000 kinetic measurements for 1036 mutants. HT-MEK provides a wide dynamic range, ~105 
in rate for PafA, which allows measurement of large active site effects and reaction rates for non-
cognate substrates. High measurement precision is obtained with rigorous error estimates using 
bootstrapping, which is possible because of the many replicates acquired within each HT-MEK 
assay. 
 
In addition to providing a large number of ground truth measurements that can be used to evaluate 
and guide the development of quantitative models, the initial PafA data provided extensive 
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mechanistic information not previously accessible. The observation that mutations at most of the 
526 PafA positions altered one or more kinetic and thermodynamic parameter underscores the 
need for measurements throughout an enzyme to map its function. Further revealing and displaying 
the intricacy of enzyme function, different sets of residues affected different reaction steps and 
underlying catalytic mechanisms as well as folding, as illustrated in the functional maps of Figure 
3. The largest mutational effects were seen at the active site and directly around it, as expected, 
but effects extended from the active site all the way to the enzyme surface, with large effects many 
ångströms from the active site and different remote regions affecting different aspects of function 
(Figure 3a). We do not think that these effects could have been predicted a priori using current 
approaches. Regardless, researchers with predictive algorithms can now use those algorithms on 
any of the multiple of enzymes amenable to HT-MEK, so that we can determine the algorthm’s 
predictive power. 
 
Consider, as an example, the active site arginine and lysine residues that contact one of the 
substrate phosphoryl oxygen atoms and are responsible for reaction specificity for phosphate 
monoesters over diesters (which are substrates of related superfamily members; [48–52]) (Figure 
3b and c). While mutation of most residues contacting these active site residues diminished 
specificity, a majority of the affecting residues were remote, including residues at the junction of 
three auxiliary domains (Figure 3d; auxiliary domains are structural regions present in subsets of 
Alkaline Phosphatase superfamily members [52]). The auxiliary domain junction sits ~20 Å from 
the active site and on the opposite side of the enzyme from the catalytic pocket, but nevertheless 
exhibits mutational effects of up to 60-fold [47]. These observations suggest that the auxiliary 
domains and their positioning are critical for catalytic function by the active site arginine and 
lysine, but we would not have predicted these or other remote effects for mutations throughout 
PafA. 
 
One would be tempted to conclude, in the absence of data to the contrary, that most distal 
functional effects arose from destabilizing the active enzyme. With HT-MEK (and related 
approaches under development), we can independently assay folding [47,53]. We found that none 
of the PafA effects arose from equilibrium unfolding (PafA is a secreted enzyme and is highly 
stable). Nevertheless, our ability to assay PafA with multiple substrates and under multiple 
expression and reaction conditions allowed us to uncover the presence of an unanticipated long-
lived misfolded state of the enzyme. Without accounting for the effects of misfolding and 
unfolding on observed reaction rates, functional models cannot be unambiguously made or tested. 
 
As noted above, an immediate challenge is to predict distal effects for multiple enzymes and to 
use HT-MEK to determine what is correctly predicted, quantitatively or qualitatively. We can also 
directly use data from HT-MEK to aid enzyme engineering at a practical level. Functional maps 
generated by HT-MEK can inform where mutations should be made to enhance the chance of 
altering and tuning specific functional parameters. In addition, HT-MEK can rapidly assess human 
alleles to reveal the biophysical bases of mutations associated with disease and to inspire new and 
precise therapeutic strategies. For instance, the discovery of surface residues (through mutation) 
allosterically linked to function may allow druggable enzyme activation as well as inhibition [54]. 
 
 
3. Conformational ensembles for evaluating and building physical and catalytic models 
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Ultimately, we want to predict kinetic and thermodynamic constants for a particular reaction with 
a specified sequence. We can measure many of these values via HT-MEK as ground truths and 
compare them to values predicted by models, but these functional constants are emergent 
properties that result from the enzyme’s underlying physical properties. We would like to have 
ground truths more closely connected to the enzyme’s physical properties; these measurements 
would provide more direct tests to evaluate and improve physics-based models. In particular, we 
want to know an enzyme’s conformational landscape and how this varies with bound ligands and 
through the enzyme’s reaction, and we want to determine the affinities and reactivities of the states 
that constitute the landscape (Figure 1a to c). 
 
The value of and need for ensemble information to understand protein folding and function has 
been recognized for decades [17,55,56]. For catalysis, the clear evidence for remote effects—from 
allosteric ligands and post-translational modifications—and efforts to understand how enzymes so 
efficiently navigate their reaction paths have led to a panoply of functional models that invoke 
dynamics (e.g., [57–61]). Experimentally, NMR provides relevant information about the rates of 
transitions between conformational states and information (e.g., order parameters) on the relative 
conformational freedom of residues (e.g., [62,63]). However, detailed atomic information that 
provides more direct tests of models, such as the extent and direction of motion and which motions 
are coupled or independent, is difficult to obtain via NMR. Fortunately, emerging X-ray 
crystallographic approaches can provide extensive and detailed information about conformational 
ensembles that can be more directly related to predictions from physics-based models. 
 
A key technological breakthrough in X-ray crystallography was cryo-freezing crystals to reduce 
their susceptibility to radiation damage and make crystal handling more reliable. Indeed at least 
90% of more than 150,000 protein X-ray structural models in the PDB were obtained under 
cryogenic conditions (diffraction source temperature ≤ 125 K) [25]. Nevertheless, X-ray structures 
can be obtained at ambient temperatures as well, conditions that do not quench a protein’s inherent 
dynamic motions [64]. Ambient or “room-temperature” (RT) X-ray crystallography requires high 
resolution (typically sub-1.5 Å) to provide reliable and extensive information about 
conformational heterogeneity at the atomic level and requires larger-than-average crystals to limit 
X-ray damage during data collection. Fortunately, many enzymes of interest yield crystals of the 
desired size and quality, and recent methodological improvements allow RT X-ray crystallography 
to be broadly implemented [65]. 
 
Conformational ensembles can also be generated from cryo X-ray structures, by combining 
multiple static structures into a so-called pseudo-ensemble [66,67]. In brief, it is assumed that 
individual cryogenic X-ray structures of proteins sharing the same or highly-similar sequences 
(e.g., with one or a few mutations) provide conformers trapped in different low-energy wells on 
the protein’s energy landscape, so that combining many cryo-structures can approximate the 
protein’s accessible ensemble of states (for pseudo-ensemble computational tools, see refs [68–
71]). Although motions are restricted and some are changed upon freezing, several lines of 
evidence and direct comparisons support a close correspondence of the flexibility within pseudo-
ensembles and the motions present at ambient temperatures [67,72]. 
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Pseudo-ensembles and RT data are complimentary—the latter providing the most reliable 
information about conformational heterogeneity and the former retaining information about 
correlated motions within the constituent conformers. These approaches have provided insights 
into multiple systems, including HRas GTPase, protein tyrosine phosphatase, proline isomerase, 
soybean lipoxygenase, β-lactamase, dihydrofolate reductase, isocyanide hydratase, herpes virus 
protease, and designed and laboratory-evolved kemp eliminases [73–83]. The most extensive X-
ray ensemble data to be collected and analyzed is for ketosteroid isomerase (KSI; Figure 4a). For 
KSI, pseudo-ensembles and high-resolution RT ensembles have been obtained for complexes 
representing the states in the enzyme’s reaction cycle, for KSIs from two different species, and for 
WT and mutant KSIs [72]. 
 
Insights from KSI ensembles 
 
The function of a catalytic residue depends not only on its presence in the vicinity of the substrate, 
but on the adoption of conformational states with the correct distance and orientation to the 
substrate and/or other residues. Indeed, positioning is universally invoked or assumed in 
descriptions of enzyme catalysis, but without ensemble information we cannot know the nature 
and extent of this positioning. Ensemble information is also needed to understand the motion 
inherent in all chemical reactions, minimally to go from van der Waals distance to form a bond, a 
change on the order of 1 Å, and how or whether this is affected by the enzyme environment. 
Furthermore, many enzymes catalyze multi-step reactions and use the same functional groups in 
different poses to carry out successive reaction steps. Again, ensemble information is needed to 
understand how enzymes navigate these challenges.  
 
KSI, a steroid isomerase, abstracts a proton from its steroid substrate with a general base, 
transferring the proton to a different position of the resulting intermediate to give the more stable 
conjugated product, using an oxyanion hole to stabilize negative charge accumulation on the 
intermediate (Figure 4a). Oxyanion holes for serine proteases have been suggested to contribute 
catalytically via ground state destabilization, by forming sub-optimal, geometrically-constrained 
hydrogen bonds that sit out of the plane of the ground state sp2 oxygen [84–87]. The KSI ensembles 
reveal motions of the oxyanion hole hydrogen bond donors on the scale of ~1 Å and an absence of 
discrimination between the sp2 and sp3 oxygen electronic configurations (Figure 4b). Instead, the 
oxyanion hole seems to provide catalysis by forming hydrogen bonds that are stronger than those 
to water in solution [6,72,88–90]. 
 
Extensive site-directed mutagenesis studies revealed an astounding effective molarity of 103–105 
M for the KSI aspartate general base [91]. While the simplest explanation for this large catalytic 
effect is precise positioning, positioning at multiple sites would be required to accommodate KSI’s 
multiple substrates and successive reaction steps. As above, KSI ensembles allowed this model to 
be tested, revealing a broad distribution of general base positions (Figure 4c), as needed to abstract 
and donate protons at multiple positions and indicating that alternative models are needed to 
account for the highly efficient observed general base catalysis [91–93]. In addition, the flexibility 
in the oxyanion hole, while precluding ground state destabilization, contributes to the 
conformational plasticity of the general base and substrate with respect to one another (Figure 4b 
and c). 
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One might expect there to be a balance between positioning and flexibility: clearly too much 
flexibility of the KSI general base would hamper catalysis while too-restricted positioning could 
as well, by limiting access to the multiple states needed to carry out the full reaction cycle. 
Remarkably, functional results and ensembles for wild type and mutant KSIs provide evidence for 
the balance: an aromatic-anion interaction provides greater flexibility of the general base than a 
hydrogen bond as well as faster reaction, whereas mutations in the general base loop that disorder 
it substantially impair catalysis (Figure 4d and e). 
 
In addition, comparisons of how conformational ensembles of KSI side chains change from 
mutations in nearby residues provides information about the balance of forces, including 
conformational entropy, that determine where and how much the oxyanion hole tyrosine is 
positioned [72] (Figure 4b). Effects like these will provide rich testing grounds for force fields in 
physics-based models. Finally, the observation that, at least in this case, ensemble rearrangements 
remain local suggests at least some limitation to the complexity of models needed to account for 
energy landscapes of enzymes (Figure 1a and b; see also “The complexity of functional models” 
below). 
 
Rules for enzyme design from ensemble crystallography 

 
A major challenge is to understand why the performance of de novo enzyme designs falls short of 
natural enzymes [94–96], and how to rationally engineer solutions that Nature (or researchers) 
discover through evolution. Early de novo design of Kemp eliminases (KE) yielded some success 
[97], but the same fold rate enhancement, or more, for the eliminase reaction is achieved in the 
active site of KSI, an enzyme evolved to carry out different chemistry with different substrates. 
This result suggests that designed KEs accomplish only coarse positioning against a general base 
within a binding pocket [98]. With laboratory-evolved improvements (17 substitutions), an ~105-
fold increase in kcat/KM was achieved [99]. Recent work from the Chica and Fraser groups sought 
to understand the mechanistic bases for these improvements, interrogating four variants along the 
mutational trajectory via room-temperature crystallography [83,100]. This effort revealed that apo-
state catalytic elements rigidified along the mutational trajectory, favoring catalytically-
preorganized poses, consistent with classical proposals for origins of catalysis from positioning of 
substrates and catalytic groups (Figure 4f) [93,101,102]. 
 
More generally, crystallographic ensembles can be used to test models of catalysis that attempt to 
link motions or positioning to function, identifying the types and scales of motions that may be 
relevant to progress along the reaction coordinate. This ability allows the structure-function 
paradigm to be supplanted by ensemble-function analyses. 

 
Ensemble measurements versus the reaction coordinate 
 
The X-ray ensemble approaches described above are needed to relate structure to energetics and 
function but also have limitations. Most centrally, they provide information about the “lower 
levels” of the enzyme’s conformational landscape. States that are uphill by >~2 kcal/mol, 
representing <5% of the total population, are unlikely to be observed. This limitation alone is not 
severe, as one can decipher much of the underlying energetics by having lots of data—as is 
provided by X-ray ensembles—in the ~0–2 kcal/mol energy range. But what is missing is 
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information about the conformations and motions as one climbs further toward the reaction’s 
transition state. Transition states are by definition fleeting states, lasting <1 picosecond, and highly 
improbable. To assess what happens at these rarified regions of the energy landscape, and whether 
the data obtained closer to the base of these mountains is adequate to model reaction coordinate, 
we need additional ground truths for these transient, high-energy states. While such information 
cannot (yet) be obtained in high throughput, several methods exist to provide this critical 
information. 
 
The highest time resolution structural data use laser pulses to initiate a process and serial high 
resolution X-ray data collection. X-ray free-electron lasers (XFEL) and cutting-edge synchrotron 
sources capture crystallographic snapshots at ambient temperatures by supplying intense 
femtosecond X-ray pulses [103,104]. Tenboer et al. used nanosecond laser pulses in conjunction 
with XFEL crystallography to isomerize the double bond of the photoactive yellow protein 
chromophore and to measure protein and chromophore conformational changes after time delays 
of 10 ns and 1 μs. These experiments revealed the significant side chain displacements associated 
with photocycle transients at high resolution [105]. Schlichting and coworkers used a 150 fs laser 
pulse to dissociate CO from myoglobin and were able to follow in real time the synchronous non-
equilibrium picosecond oscillations of the heme ring that arise from the CO dissociation energy 
and dissipate on the order of 10-100 ps [106]. Vibrational spectroscopy, while not directly 
measuring atomic positions, is particularly powerful because frequencies can be assigned to 
specific bonds located within proteins or bound reactants and can provide information about 
changes in the strength and properties of those interactions. Dyer and Callender used temperature-
jump infrared spectroscopy on the microsecond timescale to identify multiple distinct and non-
interconverting substrate binding conformations with different reactivities in lactate 
dehydrogenase, providing a detailed energetic map of reaction trajectories unavailable with 
traditional methods [107]. Vibrational spectroscopy, while not directly measuring atomic 
positions, is particularly powerful because frequencies can be assigned to specific bonds located 
within proteins or bound reactants and can provide information about changes in the strength and 
properties of those interactions. It may also be possible to carry out time-resolved vibrational 
studies on enzyme libraries in high throughput. A critical next step will be to apply these 
synchronized approaches more broadly so that motions and transitions are not averaged among the 
population of molecules in the crystal [82]. 
 

4. The complexity of functional models 
 
Residues are functionally, and thus energetically, interdependent. This interconnection is most 
simply appreciated by recognizing that without the “right” residues surrounding the catalytic and 
binding residues those active site residues do not yield significant catalysis, and vice versa [108]. 
Consequently, descriptions of “residue function” cannot be made from single-mutant variants 
alone. The extent of residue connectivity—how many residues affect the function of a particular 
residue and by how much—defines the complexity of the model that is needed to mathematically 
describe an enzyme’s function [109,110]. While this complexity is likely to vary—for enzymes 
with different folds, with allostery, etc.—we want to know the scale and range of this complexity 
as it will dictate the form of models and how they are developed and tested [111,112]. 
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We also know that residues are not fully interdependent (epistatic), as if this were the case any 
single mutation would shatter the active site and fully abolish activity. Classical mutational studies 
have found some regions, including active sites, with limited energetic dependencies among sets 
of three or fewer residues [113–115]. In one striking case, a single residue change was 
predominantly responsible for improved activity in psychrophiles versus improved stability in 
thermophiles [116]. Phylogenetic comparisons, verified experimentally, identified two nearby 
residue changes needed to fully shift stability and activity, but with much smaller effects. 
 
Phylogenetic comparisons across many enzyme families containing psycrophilic, mesophilic, and 
thermophilic variants suggested instances of limited epistasis in temperature adaptation [116]. 
Most of these covarying sets of residues corresponded primarily to pairs of residues that correlate 
with temperature adaptation in and likely confer function within divergent sequence backgrounds 
of a given enzyme family. These observations suggest substantial simplifications in residue 
interdependences and model complexity ion many cases. Nevertheless, there are also larger co-
occurring sets, and our initial HT-MEK experiments in PafA have also identified functional 
interconnections among tens of residues in regions extending from the active site to the surface. 
 
Experimentally, even measuring effects of all possible triple-mutant substitutions within a single 
small (100 residue) enzyme is intractable, as it would require >109 variants. Instead, it will be 
necessary to prioritize higher-order mutants most likely to be informative, guided by maps of 
enzyme architecture identified in initial HT-MEK surveys and additional phylogenetic information 
such as that described to understand temperature adaptation [117]. This is an area that will likely 
require innovative ideas and rigorous tests to identify paths towards predictive models. The length 
of those paths and the difficulty in traversing them will be determined by how rapidly partially-
predictive physics-based models can be developed and used as guides. 
 

Conclusion and outlook 

 
Accurate quantitative prediction of protein and enzyme functions from primary sequence is the 
ultimate litmus test of our biophysical understanding. But as other disciplines have experienced, 
breakthroughs frequently arrive later than hoped, and only at the nexus of deep need, technical 
ability, an empirical or theoretical framework, and a systematic and sustained effort. 
 
The need for accurate and general quantitative models of functional prediction is clear—they 
would transform medicine, industry, and biotechnology. But what remains uncertain is whether 
we possess the requisite theoretical and technological foundation. Where we stand is likely to be 
clarified only through careful tests of current general predictive models and algorithms, 
particularly physics-based ones, using blinded comparisons to large-scale empirical 
measurements. With HT-MEK and crystallographic ensembles, we are starting to acquire the 
needed quality and quantity of data to compare with predictions. 
 
Most immediately, HT-MEK can be used to study new enzymes, as it can be applied to any enzyme 
with a direct or coupled fluorogenic assay. HT-MEK, and extensions to it currently under 
development, can assay protein stability as well as function, and important applications include 
dissecting the functional effects of human alleles that do or may cause disease; providing 



 12

foundational information to guide protein engineering and design efforts using current approaches; 
and combining enzymes to efficiently engineer metabolic pathways.  
 
We envision a future wherein large-scale mutational studies are routinely performed with HT-
MEK. In this future, analysis, interpretation, and modeling are the rate-limiting steps of advancing 
protein biochemistry, instead of experimentation. To drive future advances in these models, 
conformational ensembles will provide ground-truth atomic positions and motions and describe 
how these are altered in mutants of differing functions. Ensembles can be assembled for many 
enzymes from the vast data available in the PDB [72], and ensemble information can now be 
readily attained for new enzyme complexes and variants through advances in room temperature 
data collection [65]. 
We suspect that a “critical assessment of quantitative protein function” will be needed. While blind 
protein function prediction challenges exist, these contests typically use in vivo coarse phenotypic 
data (e.g., whether or not particular mutations are deleterious) as targets, reflecting the absence of 
and need for large-scale in vitro quantitative measurements of specific functional parameters 
[118,119]. A new effort would involve solicitation of large-scale quantitative functional datasets 
ahead of publication and creation of objective metrics for success that scale across different 
parameters and sizes of datasets. We look forward to contributing to this effort by basic scientists, 
engineers, and theoreticians. 
 
Finally, with deep functional data in hand, it will also be possible to extend predictive models to 
the systems level, connecting the basic enzyme properties responsible for selective advantages 
observed in DMS experiments and in natural and laboratory evolution. Here comparisons of effects 
predicted from metabolic models for particular kinetic perturbations with experimental 
measurements of fitness and of metabolite levels will provide a path to develop robust models to 
understand cellular metabolism and to engineer new metabolic pathways. 
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Figure 1. Enzymes function on a high-dimensional energy landscape. (a) Enzymes form a set of states specified 
by energy wells on a free energy landscape, with dimensionality defined by the thousands of degrees of freedom from 
each rotatable bond of each residue. (b) An example ensemble of near-energy substates in which State 1 (brown) and 
State 2 (blue) lie within the lowest-energy basin (“Native-State Basin”) and equilibrate at room temperature. These 
substates have different intrinsic reactivities, reflecting barrier heights along the reaction coordinate that differ when 
projected from different conformational coordinates. (c) A mutation that does not affect intrinsic reactivity (red) can 
nevertheless diminish catalysis by redistributing equilibrium populations in the native-state basin to favor less-active 
conformers (i.e., with higher free energy barriers to reaction; State 2 vs. State 1). Mathematically, the apparent rate of 
the WT (kobs

WT) and mutant (kobs
Mut) toward a substrate (S) is the probability-weighted (occupancy-weighted) sum of 

the intrinsic rate constants of each microscopic substate. In this two-state example, k1 > k2, so kobs
WT > kobs

Mut. (d) 
Observed enzymatic activity is the summed activity of each microscopic substate (ki) weighted by its fractional 
occupancy (Pi). Mutations can alter the free energy landscape and change apparent activity (kobs), or binding (Kd), by 
altering Pi, as shown in the figure, or by altering the reaction barrier (not shown). 
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Figure 2. Application of HT-MEK to study catalysis and inhibition. (a) HT-MEK uses a valved microfluidic 
device containing >1500 chambers to (b) in vitro express, purify, and assay 1500 enzyme variants in days. Iteratively 
varying substrates, inhibitors, and conditions give kinetic and thermodynamic parameters of function. (c) Reactions 
are performed by introducing fluorogenic substrate (light blue) into reaction chambers and synchronously exposing 
surface-immobilized enzyme to the substrate with pneumatic valving. Product (darker blue) is quantified by 
fluorescence over time, using direct (fluorogenic) or indirect (coupled) assays. The assays shown are for phosphatase 
activity or for any enzyme that directly or indirectly generates inorganic phosphate. (d) Example on-chip fluorogenic 
substrate turnover curves for the PafA phosphatase with fit initial rates (left) and Michaelis-Menten curves (right) for 
WT (blue) and mutant (orange) PafA variants. A per-chamber standard curve is used to convert fluorescence to product 
concentration. (e) Many replicates (chambers) for each variant (Mutant 1: Y74V, Mutant 2: Y112G) over multiple 
chips are used to calculate bootstrap errors on fit Michaelis-Menten (left) and competitive inhibition (right) parameters 
(reproduced from Markin, Mokhtari, et al. (2021) [47]). 
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Figure 3. Spatial patterns of PafA mutational effects on specific functions. (a) Alkyl phosphate hydrolysis 
(kcat/KM) for glycine and valine substitutions at each position in PafA. Significant effects are shown as spheres, color-
coded by the size of the effect. (b) PafA active site (PDBID: 5TJ3) showing contacts between covalently-bound 
phosphate (T79) and active site K162 and R164 (yellow sticks). (c) Schematic of PafA active site residue contacts to 
bound phosphate monoester (left) vs diester (right) substrates. (d) Substrate specificity effects upon valine and glycine 
mutation of PafA positions, visualized as in a. Large mutational effects (spheres) cluster primarily around R164 and 
K162, extending distally to a three-domain junction (circled) more than 20 Å away. Panels a, c, and d are adapted 
from Markin, Mokhtari, et al. (2021) [47]. 
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Figure 4. Ensemble crystallography provides mechanistic insights toward enzyme catalysis and engineering. 
(a) KSI reaction mechanism and ensemble crystallography of multiple states in the reaction cycle. Active site residues 
from experimental RT multi-conformer models are shown for apo, ground state bound (GS), and transition state analog 
bound (TSA) KSI. (b, c) Pseudo-ensembles for KSI oxyanion hole residues Y16 and D103 (b) and the general base 
(D40, WT, or mutant D40N) (c), derived from cryo structures containing bound transition state analogs (TSA, 
equilenin and phenols). Bound TSAs were superimposed, aligned on phenol (“A”) rings, and shown as a single 
structure for simplicity. (d) Pseudo-ensemble for the KSI general base (D40, or mutant D40N) and neighboring residues 
for KSI (F56, W120) and a KSIhomolog (F56, F120). KSI and KSIhomolog kcat measurements for both the WT and the 
position 120 reciprocal mutants (KSI W120F; KSIhomolog F120W) demonstrate a 4-fold (KSI) and 8-fold (KSIhomolog) 
rate increase for phenylalanine vs. tryptophan containing variants. (e) Cartoon depiction of the relationship between 
KSI rate and general base (D40) flexibility. (f) Increase in active site rigidity during directed evolution of a designed 
Kemp eliminase (from HG3 to HG4). B-factor Z-scores are plotted for each heavy atom of the position 50 side chain 
(K, H, or Q). Structural views of the Kemp eliminase residues 87–90 loop from room-temperature crystallography, 
with B-factor Z-scores colored according to legend and increasing with sausage plot thickness (inset). Panels b to e 
adapted from Yabukarski et al. (2020) [72]; panel f adapted from Broom et al. [83]. 
 




