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Abstract 
Systematic and extensive investigation of enzymes is needed to understand their extraordinary efficiency and meet current 
challenges in medicine and engineering. We present HT-MEK, a microfluidic platform for high-throughput expression, 
purification, and characterization of >1500 enzyme variants per experiment. For 1036 mutants of the alkaline phosphatase 
PafA, we performed >670,000 reactions to determine >5000 kinetic and physical constants for multiple substrates and 
inhibitors. These constants allowed us to uncover extensive kinetic partitioning to a misfolded state and isolate catalytic 
effects, revealing spatially contiguous “regions” of residues linked to particular aspects of function. These regions included 
active-site proximal residues but also extended to the enzyme surface, providing a map of underlying architecture that could 
not be derived from existing approaches. HT-MEK, using direct and coupled fluorescent assays, has future applications to 
a wide variety of problems ranging from understanding molecular mechanisms to medicine to engineering and design. 
 
 
 

One Sentence Summary 

HT-MEK, a microfluidic platform for high-throughput, quantitative biochemistry, reveals enzyme architectures shaping 
function. 
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Introduction 
Understanding how sequence encodes function remains a fundamental challenge in biology. Linear chains of amino 

acids fold into three-dimensional protein structures that carry out the physical and chemical tasks needed for life, such as 
highly efficient and specific catalysis. Variations in these amino acid sequences across organisms and individuals confer 
beneficial and deleterious effects: sequence variation throughout evolution creates proteins with improved or novel 
functions, but variation amongst individuals can also compromise function and cause disease (1–3). An enhanced predictive 
understanding of the sequence-function landscape could have profound impacts across biology, from enabling efficient 
protein design to improving accurate detection of rare allelic variants that drive disease (4–7). 

Understanding sequence-function relationships within enzymes poses a particular challenge. Structural and 
biochemical studies of enzymes have revealed the sites of substrate binding and catalytic transformation, the residues 
directly involved in catalysis, and roles for these residues. However, the remainder of the enzyme is also essential: residues 
outside the binding and active sites are needed for the active site to assemble and function, and allosteric ligands and covalent 
modifications modulate activity through interactions with distant surface residues (8–10). Despite their importance, the roles 
played by residues outside the active site, which comprise the majority of amino acids in an enzyme, remain largely 
unexplored. 

This dearth of knowledge stems from the nature of experimental approaches currently available. Site-directed 
mutagenesis (SDM), which entails systematically mutating specific residues, has traditionally been used to assess function 
via in-depth biochemical assays that yield kinetic and thermodynamic constants. However, SDM is time, resource, and 
labor-intensive, limiting investigation to a small number of residues. By contrast, deep mutational scanning (DMS) provides 
the ability to assay the effects of all 20 amino acids at every position within an enzyme (5, 11, 12). Nevertheless, DMS lacks 
the depth and dimensionality of traditional SDM studies, typically providing a scalar readout with an uncertain relationship 
to the multiple fundamental physical constants that are needed to describe an enzyme’s function. 

Marrying the strengths of traditional SDM and emerging DMS would usher in a new era of mechanistic 
enzymology. Here, we present HT-MEK (High-Throughput Microfluidic Enzyme Kinetics), a platform capable of 
simultaneously expressing, purifying, and characterizing >1000 rationally chosen enzyme mutants in parallel with the depth 
and precision of traditional SDM. Each HT-MEK experiment provides 1000s of measurements and multiple kinetic and 
thermodynamic constants (e.g., kcat, KM, kcat/KM, Ki) in days and at low cost. 

To guide HT-MEK development and demonstrate its capabilities, we carried out a comprehensive mechanistic 
investigation of the effects of mutations to every residue within the alkaline phosphatase superfamily member PafA (Fig. 
1A and fig. S1). PafA and related phosphomonoesterases are among the most prodigious catalysts known, with rate 
enhancements of up to ~1027-fold, providing a large dynamic range to explore (13). We also anticipated that PafA, a secreted 
enzyme, would be highly stable, potentially allowing us to more deeply probe catalysis without obfuscation from global 
unfolding. Strikingly, we found that 702 of the 1036 mutants investigated have significant functional consequences, with 
none arising from equilibrium unfolding. Additional experiments revealed that many mutations promote the formation of a 
long-lived, catalytically-incompetent misfolded state both in vitro and in cells. The multidimensional measurements 
provided by HT-MEK allowed us to decouple misfolding from catalytic effects and to relate these catalytic effects to 
particular aspects of catalysis and mechanism using an approach we term Functional Component Analysis. Each functional 
parameter was affected by a large number of mutations, with spatially contiguous regions of effects extending from the 
active site to the enzyme’s surface. These regions of residues with shared functional signatures together define the enzyme’s 
functional architecture, and reveal different regions of the enzyme responsible for optimizing particular catalytic strategies 
and that can potentially be used to tune particular reaction parameters. Surface residues associated with these functional 
effects provide candidate allosteric handles for rational control of catalytic activity. The HT-MEK platform and the 
quantitative multidimensional datasets that can be obtained will have broad utility for future efforts to understand catalytic 
mechanisms, natural variation, and evolutionary trajectories, and to design enzymes with novel functions. 
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HT-MEK device and experimental pipeline 
HT-MEK is built around a two-layer polydimethylsiloxane (PDMS) microfluidic device with 1568 chambers and 

integrated pneumatic valves (Fig. 1B and fig. S2) (14, 15). Each chamber is composed of two compartments (DNA and 
Reaction) separated by a valve (Neck), with adjacent chambers isolated from one another by a second valve (Sandwich). A 
third valve (Button) reversibly excludes or exposes a circular patch of the reaction compartment surface, enabling surface 
patterning for on-chip protein immobilization and purification (Fig. 1C) as well as simultaneous initiation of successive on-
chip reactions across the device (Fig. 1D). Each DNA compartment of each chamber is programmed with a specified enzyme 
variant by aligning the device to a spotted array of DNA plasmids that encode for the expression of C-terminally eGFP-
tagged variants (fig. S3). After alignment, device surfaces are patterned with anti-eGFP antibodies beneath the Button valve 
and passivated with BSA elsewhere. All enzymes are then expressed in parallel via the introduction of an E. coli in vitro 
transcription/translation system and purified via capture by surface-patterned immobilized antibody and washing (figs. S3 
and S4). Production of up to 1568 different purified enzymes takes ~10 hours, with most steps automated. Enzymes are 
immobilized under Button valves that protect against flow-induced loss of enzyme during solution exchange and allow 
repeated synchronous initiation of reactions. 

To obtain catalytic rate parameters, we quantify: (1) the concentration of immobilized enzyme in each chamber 
using an eGFP calibration curve (fig. S5) and (2) the amount of product formed as a function of reaction time using a 
chamber-specific product calibration curve (fig. S6). We then fit reaction progress curves in each chamber to obtain initial 
rates (vi) for each substrate concentration using a custom image processing pipeline (Fig. 1, E and F, and fig. S7). This 
process, repeated on a single device for multiple substrate concentrations, multiple substrates, and multiple inhibitors, 
provides the data necessary to obtain Michaelis-Menten parameters and other kinetic and thermodynamic constants (Fig. 
1G and fig. S7). 
 
HT-MEK reproduces kinetic constants previously measured via traditional assays 

To demonstrate the technical capabilities of HT-MEK, we applied it to study seven previously-characterized PafA 
variants: wild-type (WT), five active site mutants (T79S, N100A, R164A, K162A, and N100A/R164A), and one mutant 
lacking detectable activity (T79G, negative control) (16). Activities of WT PafA and the six mutants span a broad range in 
kcat (>104-fold), kcat/KM (>104-fold), and KM (>102-fold) for aryl phosphate monoester hydrolysis, providing a stringent initial 
test of HT-MEK dynamic range (table S1). Nearly all DNA-containing chambers expressed enzyme (>90%), and all mutants 
expressed at similar levels as determined by eGFP fluorescence (Fig. 1H and fig. S8; K162 was deliberately expressed at 
higher concentrations in a later experimental tier, described below). 

While fluorogenic phosphate ester substrates permit kinetic assays of phosphatase activity with a high dynamic 
range, microfluidic assays using the commercial methylumbelliferone phosphate ester (MUP) were complicated by 
partitioning of the hydrophobic fluorescent product into the hydrophobic PDMS, which increases background and can 
distort kinetic measurements. To address this limitation, we synthesized MUP derivatives of similar reactivity (cMUP and 
a corresponding methyl phosphodiester, MecMUP) that bear a charged moiety on the leaving group to eliminate PDMS 
absorption (figs. S9 to S11 and table S1). 

Accurately resolving enzymatic rates spanning four or more orders of magnitude poses technical challenges, as 
different acquisition times are needed at catalytic extremes and even a small concentration of contaminating fast enzyme 
introduced into nearby chambers during fluid exchanges can obscure the true rates for the most catalytically-compromised 
mutants. To address the first challenge, we expressed enzymes at two concentrations: ~1.5 nM (for accurate measurement 
of fast enzymes) and ~15 nM (to speed reactions for efficient detection of slow enzymes) (Fig. 1H and fig. S8). To identify 
any regions of the device with contaminating enzyme from other chambers, we interspersed chambers that were empty or 
contained the inactive T79G mutant and also measured their apparent activity (fig. S15 and table S2; see Materials and 
Methods). Per-device normalizations (0.4 and 1.4-fold) were used to account for small variations in apparent activity due 
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to non-specific adsorption of mutant enzymes to chamber walls (see Materials and Methods). This normalization increased 
precision across replicates but did not affect conclusions (fig. S17). HT-MEK assays recapitulated cMUP kinetic parameters 
accurately and over a wide dynamic range (>104-fold in kcat/KM; Fig. 1H). 
 
Many mutations throughout PafA affect phosphate monoester hydrolysis 

To explore functional effects of mutations throughout PafA, we created mutant libraries in which we introduced 
two residues with widely differing side-chain properties at each position: i) glycine, to ablate site chain interactions and 
increase backbone flexibility, and ii) valine, to introduce a branched chain hydrophobe of average volume. Native valine 
and glycine residues were mutated to alanine. Nearly all of these 1052 possible mutants (1036, 98%) were successfully 
cloned, sequenced, expressed, and assayed via HT-MEK (fig. S18). 

We first measured the catalytic effect of each substitution on the steady-state kinetic parameters for cMUP 
hydrolysis (kcat, KM, and kcat/KM) (Fig. 2A). To facilitate measurement of mutants at catalytic extremes, we performed 
experiments in three tiers based on reaction rates. In tier 1, we assayed devices containing all valine or all glycine variants, 
printed in duplicate and with active site mutants distributed throughout as fiducial controls. Tier 2 and 3 measurements 
focused successively on the slowest variants with increasing numbers of replicates to provide high-precision measurements 
of more deleterious mutants. Each device was used to measure 10s of cMUP progress curves and all expressed variants 
were stable over days (as assessed by periodic re-measurement of rate constants at a given substrate concentration), 
facilitating high-throughput data collection. Per-experiment data reports contain all data collected for each chamber 
including initial rate plots and fit Michaelis-Menten curves (example in fig. S19, full data sets in Supporting Auxiliary 
Files); per-mutant summaries combine data from all experiments and include estimates of statistical significance (Fig. 2, B 
and C, and fig. S20). In total, we acquired a median of 9 and 7 replicates for valine and glycine mutants, respectively, over 
16 experiments (figs. S22–24 and table S2). The wealth and precision of these data allowed us to resolve differences across 
ranges of 104, 102, and 105-fold for kcat, KM, and kcat/KM, respectively. 

As expected, mutations of active site residues and catalytic Zn2+ ligands were highly deleterious, and positional 
effects varied for valine and glycine (Fig. 2, D to F). Nevertheless, a surprisingly large number of mutations throughout the 
enzyme were deleterious, with decreases in kcat/KM observed for 267 of the 1036 mutants (p < 0.01). We also observed 
several with increased activity (35; fig. S22). These measurements provide a comprehensive quantitative survey of 
Michaelis-Menten kinetic constants for mutations throughout a large enzyme, but do not tell us why so many mutations 
alter activity. 

The most obvious explanation for these widespread effects would be destabilization leading to a significant fraction 
of unfolded enzyme. Beyond destabilization, mutations can have other repercussions, altering the catalytic effectiveness of 
particular active site residues, reducing Zn2+ affinity at the bimetallo active site, or altering enzymatic protonation states. 
The ability to efficiently measure catalytic activity for all mutants under different assay and expression conditions as 
afforded by HT-MEK allowed us to directly test each of these possibilities for PafA. 
 
Widespread mutational effects do not arise from equilibrium unfolding 

Reflecting its role as a secreted phosphatase designed to function in harsh and variable environments, WT PafA is 
highly stable and remains folded, as inferred by circular dichroism (CD) spectra, even after exposure to 4 M urea for 14 
days (fig. S25). This stability suggests that any individual mutation is unlikely to lead to a significant population of unfolded 
enzyme. To directly test this expectation, we measured cMUP activity in the presence of increasing concentrations of urea 
for all mutants. If a PafA variant were already partially unfolded in the absence of urea, then even low concentrations of 
added urea would cause substantial additional unfolding, following standard urea unfolding dependence (17), and 
proportionally lower activity (Fig. 2G and Supplementary Text S1). By contrast, we observed only minor rate effects for all 
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mutants (6±1-fold decrease at 3 M compared to 0 M urea, ±SEM), dramatically less than the >109-fold decrease predicted 
for an unfolding effect and consistent with inhibition by urea with Ki = 2.6 M (Fig. 2H and fig. S26). 

Equilibrium unfolding would also predict a Zn2+ concentration dependence for the observed reaction rate (Fig. 2G). 
Consistent with an absence of unfolding effects, we observe no dependence on Zn2+ over a ~103-fold concentration range 
(Fig. 2I and Supplementary Text S1). This experiment also establishes that observed rate effects do not arise from loss of 
bound Zn2+ due to lowered Zn2+ affinity. Finally, mutants were unaltered in their pH dependencies (fig. S27 and 
Supplementary Text S1), ruling out altered protonation states as responsible for the observed kinetic effects. 
 
A general high-throughput assay for phosphate release and additional mutational effects 

While fluorogenic probes provide a sensitive and convenient method for directly visualizing enzyme activity in 
kinetic assays, many reactions lack a direct fluorogenic readout. To allow future application of HT-MEK to a much broader 
range of enzymes lacking fluorogenic substrates, we developed an on-chip coupled assay in which Pi is detected via 
fluorescence emitted upon binding to a modified phosphate binding protein (PBP, Fig. 3A) (18). Calibration curves for Pi 
and PBP and control measurements using methyl phosphate (MeP) as a PafA substrate established that this coupled on-chip 
assay can detect sub-micromolar Pi formation and accurately reproduce off-chip kinetic constants (figs. S28–S30). 

Beyond their limited availability, fluorogenic substrates are often more reactive than naturally-occurring substrates, 
and this can render their binding step rate-limiting and obscure mutational effects on the chemical step of catalysis; indeed, 
there is evidence for this behavior with PafA (16). Off-chip measurements of several active site mutants revealed a decrease 
in observed MeP activity (due to effects on the chemical step) without a concomitant change in cMUP activity, as expected 
for rate-limiting cMUP binding (Fig. 3B, red vertical arrows). Once transition state destabilization was sufficiently large, 
MeP and cMUP reactions both slowed (Fig. 3B, blue vertical arrows). The solid blue line in Fig. 3C is a fit to the rate model 
derived from the free energy-reaction profiles in Fig. 3B for a series of active site mutants (blue points; fig. S31 and 
Supplementary Text S2) (19), and this model and line predict the kinetic behavior expected for the PafA glycine and valine 
scanning library mutants. 

HT-MEK kinetic measurements for Val and Gly PafA mutants revealed kcat/KM effects for almost half the mutants 
(498/1035 with p < 0.01, fig. S32), but few exhibited the predicted behavior (Fig. 3C, solid blue line vs. grey symbols). 
Instead, the mutants tended to fall between the predicted line and a diagonal line representing equally deleterious effects on 
the reactions of both substrates (Fig. 3C, blue solid and dashed lines, respectively). Equally deleterious effects are expected 
for enzymes with WT activity but only a fraction of the enzyme in the active configuration, with variants having less 
correctly folded enzyme further down the diagonal. Thus, the observed intermediate effects could represent combinations 
of effects on the chemical step and on the fraction of the PafA mutant population that is active. 
 
Many mutations reduce catalysis by altering folding 

The urea, Zn2+, and pH data presented above provided strong evidence that there is not a significant fraction of 
inactive enzyme from equilibrium unfolding for any of the PafA variants (Fig. 2H). We therefore considered and tested an 
alternate model in which inactive enzyme resulted from a non-equilibrium process—i.e., the formation of long-lived 
misfolded protein during expression (Fig. 3D) (20). We varied the temperature and Zn2+ concentration present during 
folding, as temperature is known to affect folding efficiency (21, 22), and as PafA binds multiple Zn2+ ions during the 
folding process. We then measured reaction rates under identical assay conditions, so that any observed rate changes must 
arise from differences during folding that persisted over time (Fig. 3E). Many mutations had differential effects on observed 
catalytic activity when expressed at 23 vs. 37°C (“T-Effect”) or with different concentrations of Zn2+ (“Zn-Effect”), with 
T- and Zn-Effects in different regions of the enzyme (Fig. 3, F to I, and fig. S33). These results strongly support the presence 
of persistent non-equilibrium folding effects (Fig. 3D) (20, 21, 23). A second prediction of the misfolding model was also 
met by our data: PafA variants with WT activity but with different misfolded fractions (i.e., variants falling along the 
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diagonal blue dashed line in Fig. 3C) were equally impeded in kcat/KM and kcat but unaltered in KM (fig. S34). PafA folding 
thus apparently involves one or more branchpoints that are sensitive to temperature and Zn2+ and lead to active PafA or a 
long-lived inactive state (Fig. 3D). 
 
Altered folding pathways promote a long-lived inactive state in vitro and in vivo 

Misfolding could be an artifact of high-throughput on-chip expression, or could also arise during standard 
expression in vitro and possibly in vivo. To test for chip-induced misfolding effects, we selected 19 mutants for off-chip 
expression via in vitro transcription/translation and kinetic characterization (Fig. 3C, light green points, and table S3). 
Activities were similar off and on-chip (fig. S35), suggesting that the chip is not responsible for the observed misfolding. 

Native gels and kinetic assays provided additional support for and information about the misfolded state. Mutants 
with reduced activity had an additional band of distinct mobility when expressed at high temperature but not when expressed 
at low temperature (Fig. 3J, misfolded state “M”). Transient treatment with thermolysin, a protease that cleaves within 
exposed hydrophobic regions that occur in unfolded or misfolded proteins, resulted in loss of M but not the native state 
(native state “N” , fig. S36A) (24). Nevertheless, despite degradation of the majority of the protein (present as M), enzyme 
activity was unaffected (fig. S36B), indicating that M lacked significant activity and that N and M did not equilibrate over 
the hours taken to express and carry out these experiments. 

Our observation of a long-lived inactive state for PafA raised the question of whether analogous misfolding occurs 
in cells, where cellular machinery can assist protein folding. To test folding in cells, we recombinantly expressed 20 variants 
in E. coli that did and did not undergo temperature-dependent misfolding in vitro (Fig. 3C, dark green points, and table S4). 
Expression in vivo was also temperature dependent, with changes in apparent kcat/KM values for the in-vivo expressed PafA 
mutants that correlated with the change observed in vitro (r2 = 0.38, Fig. 3K). Circular dichroism (CD) spectra of a purified 
misfolding mutant provided independent evidence for a structural alteration that accompanied misfolding in vivo. WT PafA 
exhibits identical CD spectra when expressed at 37 or 23°C; in contrast, the CD spectrum for Y103G matches WT when 
the mutant is expressed at low temperature (23°C) but not at higher temperature (37°C; fig. S37). The observed difference 
at 37°C suggests a loss of about one third of PafA’s α-helical character in M (table S5). Together, these results suggest that 
cellular folding conditions and chaperones are insufficient to prevent mutations from causing PafA to misfold and form a 
long-lived inactive state. A tendency to form kinetically-stable misfolded states may therefore exert a selective pressure and 
influence the fitness landscape of proteins in cells (25–29). 
 
Dissecting the origins of observed catalytic effects 

HT-MEK assays allow us to quantify and dissect the degree to which observed changes in activity arise from 
changes in the amount of expressed protein, the amount that is correctly folded, and the catalytic efficiency of the correctly 
folded enzyme. Below, we isolate the catalytic effects for our PafA variants. We then take advantage of HT-MEK’s ability 
to provide quantitative kinetic and thermodynamic constants for multiple substrates and inhibitors and use these data to 
probe PafA’s functional architecture and catalytic mechanisms at a global level. 

To remove expression and folding effects, we quantified the amount of PafA expressed in each reaction chamber, 
as described above (see “HT-MEK device and experimental pipeline”). Then, after combining measurements across 
chambers and experiments for each variant, we calculated the fraction active by using the kcat/KM values measured for 
substrates with different rate-limiting steps (cMUP and MeP; Fig. 3C; Supplementary Text S3 and S4). Mathematically, we 
represented the datapoint for each PafA variant in Fig. 3C as a superposition of a catalytic component (Fig. 3C, blue solid 
line) and a misfolded component (Fig. 3C, diagonal blue dashed line) and solved for both (Fig. 4A and fig. S38). The solid 
line in Fig. 3C defines the relationship between cMUP and MeP hydrolysis by active PafA and the dashed line describes 
the equal loss in observed activity for the two substrates due to inactive PafA (fig. S38). With this procedure, we were able 
to quantify catalytic effects (kcat/KM

chem) for 946 of the 1036 PafA variants and obtain upper limits of kcat/KM
chem for an 
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additional 65 variants (fig. S39). Deleterious catalytic effects were found for mutations at 161 of PafA’s 526 positions (Fig. 
4B, figs. S40 and S41, and table S6). Mutations at an even larger number of positions, 232, gave folding effects. 

The largest catalytic effects cluster in and around the active site, with the fraction of residues with mutational effects 
diminishing with distance from the active site (Fig. 4C and table S6). While positions giving catalytic effects tend to cluster, 
the pattern of effects is asymmetric and complex (Fig. 4D and see below). To better understand these patterns and to relate 
overall effects to the specific mechanisms that PafA uses in catalysis, we developed an approach we refer to as Functional 
Component Analysis (FCA). In FCA, we first define Functional Components (FCs), which describe different energetic and 
functional relationships in the catalytic cycle based on prior mechanistic insights for PafA and other AP superfamily 
members (16, 30, 31). We then attempt to attribute observed mutational effects to alterations in specific FCs using the 
extensive quantitative measurements enabled by HT-MEK, thereby defining the functional architecture of PafA. 
 
Functional Component 1: Effects through the O2 phosphoryl oxygen atom 

Our first Functional Component is derived from the observation that removal of two active site side chains, K162 
and R164, renders PafA an equally potent phosphate mono- and diesterase (16) (fig. S42); these residues interact with the 
phosphoryl oxygen that is anionic in monoesters but esterified in diesters (O2, Fig. 5A) (30). Thus, interactions that support 
catalysis by K162 and R164 are expected to disrupt monoester but not diester hydrolysis, and we define FC1 to reveal these 
effects (FC1 = ∆diester/∆monoester, where ∆ = (𝒌𝐜𝐚𝐭/𝑲𝐌)mutant/(𝒌𝐜𝐚𝐭/𝑲𝐌)WT). While the simplest expectation is that 
mutations to residues neighboring K162 and R164 will have FC1 effects, we cannot predict how large and how varied these 
effects are, how far they extend from the active site, whether there are remote regions that have large effects, or whether 
effects extend to the enzyme surface. In addition, we cannot predict whether residues affecting FC1 also contribute to other 
catalytic mechanisms, represented as other Functional Components below. A comprehensive accounting of each residue’s 
effects on each identified FC is a necessary step to understand an enzyme’s functional architecture—how the residues and 
structures that surround and extend from the active site potentiate the functions carried out within the active site. 

To measure diester activity on-chip, we synthesized a fluorogenic PafA phosphate diester substrate suitable for HT-
MEK (MecMUP, see Materials and Methods), then measured kcat/KM for the PafA mutant libraries (high KM values for the 
noncognate diesterase activities preclude estimation of kcat and KM separately) (fig. S43) (16). We obtained kcat/KM values 
for 857 of the 1036 mutants, and upper limits for an additional 178 (fig. S44, A and B). As for the monoesterase 
measurements described above, on-chip diester rate constants matched off-chip measurements (fig. S44C). To enhance 
detection of mutations with preferentially-reduced monoesterase activity (FC1), we compared measured rates directly, 
without correcting for folding effects (fig. S45A), as folding affects both substrates equally and the direct comparison yields 
stronger statistical inference (fig. S45B). 

Many mutants have FC1 effects: 88 Val and 93 Gly mutations (fig. S45C), corresponding to 156 of the 494 
measurable positions throughout PafA (of a total of 526 positions; Fig. 5, B to D). Seven of the ten measurable non-active 
site residues directly contacting K162 or R164 (2nd shell residues) exhibited FC1 effects (Fig. 5E, fig. S46, A and B, and 
table S7A), consistent with frequent 2nd shell effects observed in directed evolution experiments in multiple systems (32–
34). Of the three active site Zn2+ ligands with measurable effects upon mutation, we observe an FC1 effect for D38G (which 
accepts a hydrogen bond from K162) but no effect for D352G and H353V (which do not interact with K162 or R164) (Fig. 
5E and table S7B). The active site variants T79S and N100G also had FC1 effects (Fig. 5E and tables S7A and S9), consistent 
with coupling between active site residues due to shared contacts with K162 and R164 (Fig. 5E). 

Although the largest effects were observed for active site residues and next-largest for the 2nd shell residues, there 
was no additional drop in effect size after the 3rd shell; indeed, the majority of residues with >10-fold FC1 effects were 
found in the 3rd shell and beyond (15 of 23; fig. S46 and table S9). Several of these residues (4) lie at the enzyme surface 
(Fig. 5D and fig. S46), consistent with the hypothesis that enzymes possess a reservoir of allosteric potential and suggesting 
that HT-MEK can be used to identify regions that are potential sites for allosteric inhibitors and drugs (35–39).  
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PafA has three of four possible non-terminal auxiliary domains found within the AP superfamily (ADs 2–4, see 
Supplementary Text S5) that sit around the surface of the universally conserved Rossmann fold (Fig. 5F and fig. S47). ADs 
2 and 4 are present in both AP superfamily phosphate mono- and diesterases, whereas AD 3 contains K162 and R164 and 
is considerably more extensive in the monoesterases than in the diesterases (figs. S47 and S48, and table S10). Despite these 
apparent functional and evolutionary differences, FC1 effects are found extensively in all three ADs (fig. S49A and B, table 
S11) and the effects within each AD span similar magnitudes (fig. S49C). The largest FC1 effect outside of the active site 
or 2nd shell comes from a solvent-exposed surface residue, D473, within AD 4 (Fig. 5F, yellow); a dramatically larger effect 
for the valine substitution (>60-fold vs. <2-fold for D473G) suggests that a change in local folding may allosterically disrupt 
the O2 site 20 Å away. Intriguingly, the truncation of AD 3 in AP superfamily phosphate diesterases eliminates the direct 
interaction between ADs 3 and 4 seen in PafA and other monoesterases (figs. S1 and S47). We speculate that the residues 
in AD 3 that exhibit FC1 effects functionally link PafA’s surface (D473) to its active site (K162 and/or R164) (Fig. 5F). 
Future multi-mutant cycle experiments (40–42) via HT-MEK may allow dissection of these functional pathways and their 
underlying structural properties. 
 
Functional Components 2 and 3: Effects on phosphate affinity 

To provide catalysis, enzymes must bind their transition states more strongly than they bind their substrates, as 
otherwise the energetic barrier for the reaction and reaction rate would remain the same as in solution (43, 44). Enzymes 
must also limit the binding of substrates and products to allow sufficient turnover in the presence of higher substrate and 
product concentrations (45, 46). For these reasons, ground state destabilization has been considered a possible mechanism 
for enhancing enzyme function, and there is evidence for electrostatic ground state destabilization by PafA and other AP 
superfamily members via electrostatic repulsion between the anionic nucleophile, T79 in PafA, and the negatively-charged 
phosphoryl oxygens (Fig. 6A) (16, 31, 47). For PafA, mutating T79 to serine increases the affinity for inorganic phosphate 
(Pi), the reaction’s product and a ground-state analog, by 100-fold, while in E. coli AP the nucleophile S102G mutation 
increases affinity >1000-fold (16, 31); the S102G mutation ablates the negatively-charged group adjacent to the phosphoryl 
anion and the chemically conservative T79S substitution presumably allows greater mobility and an ability to reduce 
electrostatic repulsion (16). We therefore define the second Functional Component, FC2, by strengthened Pi binding 
(𝐾i234564/𝐾i78 	< 1) that suggests a reduction in ground state destabilization upon mutation. 

Conversely, active site residues typically make both ground state and transition state interactions, so their removal 
weakens binding and diminishes catalysis, in some instances to a similar extent (so-called “uniform binding”) and in other 
cases preferentially destabilizing the transition state (48–51). As expected, mutations to the PafA active site residues that 
interact with the phosphoryl O1 and O2 oxygen atoms, N100, K162, and R164, weaken Pi binding, and N100 and K162 
mutations have even larger effects on catalysis, indicating preferential transition state stabilization (fig. S51) (16). We 
therefore define the third Functional Component (FC3) by effects that weaken Pi binding (𝐾i234564/𝐾i78 	> 1), and we 
assess FC2 and FC3 below. 

To measure inhibition constants for the valine and glycine scanning libraries, we quantified rates of cMUP 
hydrolysis as a function of Pi concentration and fit the observed initial rates to a standard competitive inhibition model (Fig. 
6B). HT-MEK-determined inhibition constants agreed with those measured previously in off-chip assays for active site 
mutants (fig. S52) and are of higher precision than kinetic constants (Fig. 6C), as uncertainty in total enzyme concentration 
and the fraction of active enzyme does not affect measured inhibition constants (see Materials and Methods; Supporting 
Auxiliary Files contain per-experiment reports of all inhibition measurements). 

We uncovered 331 mutants that increased Pi affinity (FC2) and 73 that decreased Pi affinity (FC3) (Fig. 6C and fig. 
S53). Thus, about one-third of all mutants measurably altered phosphate affinity, and, remarkably, four times as many 
mutations enhanced binding as weakened it. As it is highly unusual to enhance function by random variation, this 
observation suggests that residues at many positions are evolutionarily selected to prevent tight Pi binding. Mutations with 
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ground state destabilization effects (FC2) were located in an extended yet spatially-contiguous region that included the helix 
containing the T79 oxyanion (“nucleophile helix”), the catalytic Zn2+ ions, and the distal Zn2+ site (Fig. 6D and tables S12 
and S13). 

The catalytic effects (kcat/KM
chem) for mutants with FC2 effects ranged from insignificant to 100-fold reductions (Fig. 

6E and fig. S54). For most mutants, the magnitude of the catalytic effects was greater than that of the FC2 effects, consistent 
with multiple inactive (or less active) mispositioned conformations of the T79 oxyanion (or other catalytic groups), only 
some of which ameliorate electrostatic repulsion. Nevertheless, five mutants with the largest FC2 effects had little or no 
catalytic effect. These residues formed a spatially contiguous subregion on and adjacent to the nucleophile helix (Fig. 6E 
and F, and fig. S54). These results suggest that the resting mutant enzyme remains aligned for catalysis but that the T79 
oxyanion can rearrange to reduce electrostatic repulsion in the presence of bound Pi. 

Mutants that weakened Pi binding (FC3 effects) were also located in a region that was contiguous (Fig. 6G). The 
largest FC3 effects were near active site residues K162 and R164 and yielded qualitatively similar (weaker Pi binding & 
kcat/KM

chem) but quantitatively smaller effects (Fig. 6H, red; fig. S55). These results, like those for FC2, are consistent with 
a preponderance of mutations having larger effects on catalysis than binding, presumably reflecting the greater constraints 
present in the transition state (52). 

Residues with FC2 and FC3 effects formed an interface (Fig. 6G), with a small number of residues at this interface 
yielding either an FC2 or FC3 effect depending on the identity of the mutation (fig. S56). FC2 effects extended significantly 
further from the active site than FC3 effects (Fig. 6G and figs. S57 and S58), perhaps reflecting a need for extensive 
interactions to mutually constrain the relative positions of the T79 anionic nucleophile and the substrate in the presence of 
strong electrostatic repulsion. 

FC2 and FC3 are mutually exclusive by definition, as mutations that strengthen Pi binding cannot simultaneously 
weaken Pi binding. However, a systematic comparison of mutational effects across Functional Components 1–3 reveals that 
many mutations outside the active site preferentially affect either FC1 or FC2 (fig. S59). Further, several mutations 
preferentially alter FC2 without dramatically altering FC1, reducing the fraction of active enzyme, or reducing overall 
catalysis (kcat/KM

chem; fig. S59). The ability to selectively alter particular enzyme properties via specific mutations provides 
a potential starting point for attempts to engineer enzymes with desired kinetic and thermodynamic constants and behaviors. 
 
Functional Component 4: Rates of phospho-enzyme hydrolysis 

Linking observed mutational rate effects to their physical and chemical origins requires knowledge of the step that 
is being observed—i.e., the rate-limiting step. While pre-steady state approaches (e.g., stopped flow, rapid quench) are the 
gold standard for determining rates of individual reaction steps, these approaches do not readily scale to large libraries. 
Here, we leverage prior mechanistic knowledge and our ability to measure multiple reactions for multiple substrates to 
distinguish individual PafA reaction steps and determine mutational effects on these for 992 PafA variants. 

For PafA, each steady state kinetic constant can have a different rate-limiting step (Fig. 7A). The steady state kinetic 
constant kcat/KM can be limited by substrate binding or chemical cleavage of the substrate to form the covalent enzyme-
phosphate (E–Pi) species (Fig. 7A, k1 and kchem,1 steps). As described above, comparing kcat/KM values for reactions of cMUP 
and MeP allowed us to determine mutational effects on the chemical step and to discover that many PafA mutants form a 
long-lived misfolded state (Figs. 3 and 4). The steady state rate constant kcat can be limited by hydrolysis of E–P (kchem,2) or 
by dissociation of Pi subsequent to hydrolysis (koff,Pi; Fig. 7A). Here, we determined mutational effects on kchem,2 using 
measurements of kcat for cMUP and Ki for Pi, and kchem,2 effects define FC4 (fig. S60, and see Supplementary Text S6). 
Seven mutants changed the rate-limiting step from E–Pi hydrolysis to Pi release (koff,Pi < kchem,2; fig. S61). The ease of this 
transition is consistent with the observation of naturally-occurring alkaline phosphatases of the AP Superfamily with either 
of these steps rate limiting (53). 
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Overall, we find 18 Val and 36 Gly mutants that reduce turnover via reductions in kchem,2 (fig. S60), and these 
spatially cluster near the three active site phosphoryl oxygen binding residues (N100, R164, and K162) and extend to the 
distal Zn2+ site (Fig. 7B). The FC4 residues overlap substantially with those affecting kcat/KM

chem and Functional Components 
1–3 (table S15). In the simplest scenario, the mutations reducing kchem,2 would be a subset of those reducing kcat/KM

chem, as 
kcat/KM

chem includes a phosphoryl transfer chemical step but also involves an additional step (ligand binding). Our data 
support this expectation, as mutations affect either kcat/KM

chem alone or kcat/KM
chem and kchem,2 to a similar or smaller extent 

(Fig. 7C). 
 

Evolutionary constraints revealed by comparisons between phylogeny and functional parameters 
Natural evolution provides a mutagenesis and selection experiment at a massive scale. Highly conserved residues 

typically perform critical functions (e.g. active site residues) and coevolution between residues can reveal molecular contacts 
required for folding and stability (54–56). Nevertheless, conservation cannot reveal all aspects of function, most basically 
because multiple functional properties combine to give the observed conservation parameter. HT-MEK and FCA have 
allowed us to dissect and quantify effects of mutations at every residue on misfolding, catalysis, and four Functional 
Components. Here, we assess the correlation between conservation and these functional effects using a metagenomic 
alignment of 14,505 AP superfamily sequences with PafA-like active site residues (T79, K162, and R164; fig. S62). 

Fig. 8A shows conservation at each position throughout the PafA structure and provides the starting point for these 
comparisons. Residues with high conservation scores often have no apparent functional effect, and some with lower scores 
have effects (figs. S63 and S64). Overall, observed kcat/KM values (MeP hydrolysis) correlated with the information content 
at a given position (Spearman rho = −0.4; Fig. 8B and fig. S63A), with this correlation increasing slightly for more 
perturbative substitutions (fig. S63B). Systematic comparisons of information content and the mutational effects on 
misfolding, catalysis (kcat/KM

chem) and each of the four Functional Components gave Spearman’s correlation coefficients 
with magnitudes ranging from 0.1 to 0.25 (Fig. 8B). The observation of multiple correlations with these functional 
parameters underscores the complexity of evolutionary pressure and responses and the need for additional information to 
understand and interpret the sequence record. 
 
Discussion 

HT-MEK uses automatic valved microfluidics to carry out high-throughput expression, purification, and 
comprehensive biochemical characterization of enzymes at an unprecedented scale. Using HT-MEK, we quantified the 
effects of 1036 single amino acid substitutions within PafA phosphatase, measuring >650,000 reaction time courses to 
obtain over 5000 kinetic and thermodynamic constants for multiple substrates and inhibitors across our mutant library. HT-
MEK can be applied to the vast number of enzymes whose activity can be monitored via fluorescence either directly or with 
a coupled assay. Here, we used both fluorogenic substrates and a sensitive coupled assay with a previously established 
fluorescent Pi sensor (18). This coupled assay renders HT-MEK immediately applicable to ATPases, GTPases, helicases, 
protein chaperones, polymerases (with pyrophosphatase present), and many additional enzymes. 

Remarkably, initial assays quantifying the effects of glycine and valine substitutions at every PafA position revealed 
deleterious kcat/KM effects for nearly half of the mutants. Many large effects clustered around the active site, but effects also 
extended throughout the enzyme and to the surface, and many of the largest effects were distant from the active site (Fig. 
8C, fig. S32). These findings mirror results obtained from DMS studies of other enzymes that often reveal distal effects on 
product formation or organismal fitness (12, 57–59). However, HT-MEK allowed us to determine how mutations affect 
steady state rate parameters and individual reaction steps and to interrogate their mechanistic origins. 

HT-MEK-based measurements of kcat/KM values for phosphate monoester substrates with different rate limiting 
steps suggested the presence of a long-lived inactive population for most PafA variants (Fig. 3C); additional experiments 
indicated that none of the effects originated from equilibrium unfolding and instead resulted from mutations promoting the 
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formation of a misfolded state (Fig. 3D to I). The analogous behavior observed for these mutants in E. coli and correlation 
of misfolding effects with phylogenetic conservation is consistent with a selective pressure to avoid misfolding in vivo and 
with growing evidence that kinetic factors affect stable protein expression in cells (Fig. 3K) (20, 26, 60, 61). The strong 
dependence of activity on temperature and Zn2+ concentration present during expression suggests that mutations promoting 
formation of the inactive state may disrupt co-translational folding (20, 62). We speculate that highly stable proteins like 
PafA and other secreted enzymes may be more prone to forming long-lived kinetically-trapped states. Moreover, these 
results highlight the need to explicitly decouple mutational effects on folding and catalysis, whether in cell-based or in vitro 
high-throughput assays, as a prerequisite for interpreting effects and understanding the functional roles of residues 
throughout an enzyme. 

By removing effects from misfolding and ensuring that chemistry was rate limiting, we were able to quantify 
mutational effects on intrinsic catalytic activity and on a panoply of additional kinetic parameters. To gain insights from 
this multidimensional dataset, we expressed these effects in terms of previously identified PafA catalytic mechanisms using 
a framework we term Functional Component Analysis (FCA; table S16). FCA exploits the rich data provided by HT-MEK 
to generate an atlas of PafA functional “anatomy” with unprecedented detail, revealing that PafA is comprised of large, 
well-defined, and spatially contiguous regions of residues that share catalytic signatures upon mutation (Fig. 8C). While 
catalytic effects are largest for mutations to residues in and contacting the active site, as expected, effect sizes do not decay 
continuously with distance from the active site. Instead, catalytic (and Functional Component) effects extend from the active 
site to the distal Zn2+ site, previously assumed to play a purely structural role, and to other surface regions. These 
observations affirm that the enzyme beyond the active site is not a passive, monolithic scaffold, but rather aids in positioning 
active site residues and/or modulating dynamics that contribute to function. 

Comparing patterns of mutational effects between FCs reveals the idiosyncratic nature of atomic environments and 
reveals “architectural” solutions for different catalytic interactions and strategies. From prior mechanistic studies, we 
expected residues with FC1 effects (monoesterase:diesterase specificity) to contact either the K162 and R164 residues that 
directly interact with the O2 phosphoryl oxygen atom or to lie on or contact the “monoesterase helix” present only in AP 
superfamily monoesterases (Fig. 5A and figs. S1 and S47). For FC2 (ground state electrostatic destabilization), we 
anticipated effects around the T79 anionic nucleophile and associated “nucleophile helix” (Fig. 6, D to F, and fig. S1). While 
residues with each effect generally appeared in the expected vicinities, mutations on and around the monoesterase helix 
largely did not give FC1 effects (Fig. 5C to F) while those on and around the nucleophile helix gave the largest FC2 effects 
(Fig. 6F and fig. S54). These differences may reflect a need for more interactions to secure the nucleophile helix against 
ground state electrostatic repulsive forces and prevent its rotation and translation. Consistent with this model, many more 
glycine than valine mutations led to increased Pi binding (222 Gly vs. 109 Val, fig. S53), potentially because the additional 
space afforded by side chain ablation allows structural rearrangements to reduce electrostatic repulsion without disrupting 
favorable binding interactions. 

While the functional regions we observe have superficial similarities to sectors and other measures of evolutionary 
co-variation and co-conservation (63–67), our data report directly on sequence-function relationships in ways that sequence 
analyses alone cannot. Positions at which mutations promote misfolding tend to be more conserved, consistent with the fact 
that all AP superfamily members must fold to function. However, decoupling mutational effects on folding from those on 
catalysis reveals that 702 of our 1036 PafA mutants influence at least one functional parameter, with different mutations 
affecting different aspects of function (Fig. 8C). 

For sequence analysis, even if a particular algorithm could identify these positions, it could not link the sequence 
conservation or variation to the particular aspect(s) of function under adaptive selection. Selective pressures likely vary, and 
vary in unknown ways, through evolution. For example, the selective pressures on PafA, and thus its adaptive responses, 
will differ with the available Pi at the organism’s physical location, whether available Pi varies temporally, and whether 
there is competition for Pi from other organisms present in the same ecological niche. In sequence comparisons, a mutation 
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with a critical role in responding to these variable adaptive pressures would be poorly conserved, changing frequently despite 
being tightly linked to survival, and thus appear to be unimportant. HT-MEK opens new opportunities to link molecular 
sequence and function to evolutionary outcomes in the future. 

Most distal mutations with catalytic effects preferentially affect the transition state over binding, underscoring the 
complexity of proteins as catalysts (Fig. 6H). The need for interactions between residues throughout the enzyme to ensure 
optimal catalysis highlights the tremendous challenges inherent in de novo design of efficient enzymes, as it suggests 
computational efforts must consider interactions between prohibitively large numbers of residues. The detailed anatomical 
maps provided by HT-MEK and FCA—and the ability to distinguish catalytic from folding effects—can guide 
computational and experimental mutagenesis to improve enzymes by identifying residues and regions that affect particular 
aspects of catalysis. In addition, the ability to rapidly iterate through design-build-test cycles will generate information not 
only about which designs were successful, but the mechanisms by which other designs failed, information that should prove 
valuable in developing next-generation de novo enzyme design. 

Enzymes are the targets of many therapeutics, are altered in genetic diseases, serve as workhorse tools for modern 
molecular biology, and play critical roles in industrial processes. The rapidity and low per-assay cost, combined with the 
wide availability of fluorescence-based enzymatic activity assays, make HT-MEK a powerful tool for future applications 
across all these areas. In basic research, the large and highly quantitative datasets provided by HT-MEK can greatly extend 
and even supplant mechanistic studies that now use traditional site-directed mutagenesis approaches in many cases. When 
combined with recent advances in gene synthesis, HT-MEK can facilitate rapid functional characterization of metagenomic 
variants across superfamilies, providing a critically-needed additional dimension to phylogenetic analyses. In medicine, HT-
MEK can rapidly determine functional effects of human allelic variants of unknown significance and systematically identify 
candidate allosteric surfaces within currently “undruggable” therapeutic target enzymes. We anticipate HT-MEK 
contributing to these and still more areas of basic and applied biology, medicine, and engineering. 
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Fig. 1. PafA and HT-MEK overview. (A) Crystal structure of WT PafA (PDB ID: 5TJ3, left), and representation of its active site in the transition state of phosphate 
monoester hydrolysis (right), showing active site residues and relevant secondary structures (“nucleophile helix,” positions 77–89, green; “monoesterase helix,” positions 
161–171, yellow; this color coding is used throughout). The PafA catalytic cycle is schematized above where E–P represents the covalent phospho-threonine intermediate. 
(B) HT-MEK microfluidic device image and schematic showing solution (Flow) and pneumatic manifold (Control) input ports, as well as device valves and chambers. 
(C) Schematic of on-chip enzyme expression pipeline. Dark and light gray valves are pressurized (closed) and depressurized (open), respectively. (D) Schematic of on-
chip activity assays using fluorogenic substrate in reaction chambers (orange). (E) Sample data images of immobilized enzyme (left) and accumulation of fluorogenic 
product over time for WT PafA and two active site mutants (R164A and T79S) with the substrate cMUP. (F) Example cMUP progress curves for chambers containing 
WT and two active site mutants, and initial rate fits to these data. (G) Michaelis-Menten fits to initial rates yield kcat, KM, and kcat/KM for cMUP. (H) On-chip expressed 
concentrations for WT PafA and six active site mutants calculated using eGFP calibration curves (left); comparisons of on-chip (box plots) and off-chip (grey circle) 
values of kcat, KM, and kcat/KM values for cMUP for seven PafA variants (WT, R164A, T79S, N100A, N100A/R164A, K162A, and T79G; table S1). K162A was expressed 
at higher concentration in a later experimental tier and data were merged with other active site variants from the Active Site print (table S2). “Skipped” refers to chambers 
without printed plasmid DNA. The boundary of the pink shaded region is 10-fold above the median apparent second order rate constant determined from controls 
measuring hydrolysis in T79G chambers (see Materials and Methods). 
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Fig. 2. HT-MEK measurements of aryl phosphate monoester (cMUP) hydrolysis for valine and glycine scans of PafA. (A) Median Michaelis-Menten curves for wild-
type and an example mutant with kcat and KM effects. The colored regions denote 99% confidence intervals (CIs) on the medians of parameters from replicate 
measurements. (B) Valine substitutions at 126 positions alter cMUP kcat/KM at p < 0.01 (105 slower, 21 faster, gold markers; grey, p-value ≥ 0.01). (C) Glycine substitutions 
at 176 positions alter cMUP kcat/KM at p < 0.01 (162 slower, 14 faster, gold; grey, p ≥ 0.01). (D) Magnitude of effects for glycine vs. valine substitutions on kcat/KM of 
cMUP hydrolysis at each position, colored by identity of the native residue. Arrows denote the presence and direction of measurement limits. (E) Magnitude of valine 
substitution effects on cMUP hydrolysis shown on the PafA structure (p < 0.01 sites shown as spheres, p ³ 0.01 and missing sites represented as ribbons). (F) Magnitude 
of glycine substitution effects on cMUP hydrolysis shown on the PafA structure (coloration as in E). (G) Model of equilibrium unfolding of PafA in the presence of 
varying urea and Zn2+. (H) Activity of mutants relative to WT in the presence of increasing concentrations of urea at 50 μM cMUP and compared to the urea dependencies 
predicted if mutants were 10% unfolded (red and yellow curves). (I) Activity of mutants relative to WT (normalized across experiments as described in the Materials and 
Methods) in the presence of decreasing concentrations of zinc. Orange and red points are expected activities given Zn2+-concentration dependent unfolding assuming 2 
and 3 Zn2+ binding events, respectively, if mutants were 10% unfolded at 100 µM Zn2+. 
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Fig. 3. Substrates with different intrinsic reactivity reveal PafA kinetic folding traps. (A) Inorganic phosphate (Pi) produced from MeP by PafA is detected in real time on 
chip using the Phosphate Sensor, a fluorophore-conjugated phosphate binding protein (PBP) with dramatically enhanced emission upon Pi binding (18). (B) Reaction 
coordinate diagrams for substrates with either chemistry (MeP) or binding (cMUP) as the rate-limiting step, illustrating how effects of mutations (red, blue) can be 
obscured for substrates with a binding-limited rate of hydrolysis (cMUP). In each case, the solid part of the arrow corresponds to the portion of the intrinsic effect on the 
chemical step expressed in kcat/KM. (C) Measured kcat/KM for MeP vs. kcat/KM for cMUP for active site mutants off-chip (blue points) and for valine and glycine library 
mutants. Limits in one or both directions are denoted by chevrons pointing in the direction or quadrant, respectively, of the limit. Green points correspond to Val and Gly 
library mutants subjected to further off-chip characterization in vitro (light green) and/or in vivo (dark green). The predicted functional relationship between catalytic 
efficiency towards cMUP and MeP is shown as a solid blue line; the relationship predicted for enzyme with WT activity but a varying fraction of inactive enzyme is 
shown as the dashed blue line (see Supplementary Text S2). The right boundary of the red shaded region (~103 M−1s−1) denotes an approximate on chip lower limit of 
detection. (D) Scheme showing kinetic partitioning between folded (active) and misfolded (kinetically-trapped) enzyme during or following translation. (E) Pulse-chase 
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experiment to test for expression-dependent misfolding: expression under different conditions (varying temperature or [Zn2+]) was followed by activity measurements 
under a common condition. (F) Residues with temperature dependent misfolding shown as spheres on the PafA structure (see Materials and Methods). (G) Histogram of 
the effects of expression temperature on mutant PafA activity (red) compared to the distribution of replicate activity assays (gray; cMUP kcat/KM, measurements under 
standard expression conditions). (H) Residues with expression [Zn2+] dependent activity changes upon mutation shown as spheres on the PafA structure. (I) Histogram 
of the effects of expression Zn2+ concentration on mutant PafA activity (blue) compared to the distribution of replicate activity assays (gray; cMUP kcat/KM, measurements 
under standard expression conditions). (J) Native gels for WT PafA and a subset of mutants expressed via in vitro transcription/translation off-chip. After expression at 
23°C, all constructs appear as a single band corresponding to the natively-folded species (“N”); after expression at 37°C, an additional band corresponding to the putatively 
misfolded (“M”) species appears for non-WT PafA variants. (K) Linear least-squares regression of expression temperature effects on-chip (in vitro) versus in E. coli (in 
vivo) (best fit obtained for log-transformed data, red line: slope = 0.41, intercept = 0.14). See table S3 for mutants and Materials and Methods for assay conditions. In vivo 
protein levels were determined from eGFP fluorescence to estimate total expressed protein concentration. 
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Fig. 4. Separating mutational effects on catalysis from changes in the enzyme fraction active (fa). (A) Catalytic effects and fa effects (relative to wild-type PafA) for all 
variants, colored by effect (see Materials and Methods), with the distributions of effects projected along the axes (stacked).  (B) Total counts of mutants with catalytic (p 
< 0.05) and fa effects (p < 0.01) for the valine and glycine libraries, and the total number of positions (of the 525 total measured residues) with effects (“Merged”; see fig. 
S41 for details). (C) Fraction of non-active-site mutants with deleterious catalytic effects (p < 0.05) as a function of distance from the active site (5 Å bins, see table S6). 
(D) Representation of the 161 positions with deleterious catalytic effects on the PafA structure, corresponding to the “Merged” set in panel B. Residues with deleterious 
effects (>5-fold down from WT) are colored and shown as spheres; positions at which both mutations have catalytic effects are colored by the more deleterious effect. 
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Fig. 5. Functional Component 1: catalytic effects through the O2 phosphoryl oxygen atom. (A) Schematic of the transition states for reaction of MeP (left panel) and 
MecMUP (right panel), highlighting the position of the methyl group on the O2 phosphoryl atom of MecMUP (orange) and its interactions with K162 and R164. Thin 
black and pink arrows are proportional to kcat/KM and the thick black arrow denotes their difference (∆monoester and ∆diester). The ratio of kcat/KM effects (or the difference 
between ∆monoester and ∆diester in ∆G space) gives FC1. (B) FC1 values for variants as a function of the minimum distance of each to K162 or R164, with active site, 2nd 
shell, and significantly affected surface residues colored. (C) PafA positions with FC1 effects (p < 0.01) when mutated to valine or glycine, colored by FC1 magnitude: 
>5-fold effects are shown as spheres, with ribbon coloring for positions with ≤5-fold FC1 effects. (D) PafA surface representation with FC1 effects colored as in C. (E) 
FC1 effects of active site and 2nd shell residues. Residues with significant effects are colored yellow; those without FC1 effects and unmeasured residues are blue and 
black, respectively (see table S7). (F) Distal (³3rd shell) positions with >5-fold FC1 effects shown as colored spheres. The PafA Rossmann core is shown as a gray surface 
and auxiliary domains 2–4 as colored ribbons. 
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Fig. 6. Functional Components 2 and 3: mutational effects on affinity for inorganic phosphate. (A) Reaction coordinate diagram for hypothetical mutant (green) in which 
ground state destabilization is diminished relative to the WT (black). The schematic illustrates the model of a mutation increasing flexibility of the T79 nucleophile 
yielding an FC2 effect. (B) Median Pi inhibition curves for wild-type and two representative mutants with FC2 (H83V) and FC3 (A165V) effects. The colored regions 
denote 99% confidence intervals (CIs) on the medians of replicate Ki measurements. Inhibition curves were measured using between 6 and 12 Pi concentrations, with an 
average of seven replicates per mutant. (C) Volcano plot of Ki Pi effects for glycine and valine scan mutants (p < 0.01, green markers; p ≥ 0.01, gray markers). Plotted 
values with log2[(Ki)mutant/[(Ki)WT] < 0 are equivalent to log2(FC2) and those with log2[(Ki)mutant/[(Ki)WT] ≥ 0 are equivalent to log2(FC3). (D) PafA structure with positions 
for which Ki Pi is >1.5-fold tighter than the WT (at p < 0.01) in either or both scans shown as spheres, coloring by the larger effect when both had FC2 effects. The 
nucleophile helix (green) is largely obscured by spheres representing FC2 effects on and abutting it. (E) Scatter plot of catalytic and FC2 effects (p < 0.01), colored by 
location in PafA. Error bars correspond to 95% confidence intervals (CIs) determined from bootstrapping, and the mutants were labeled if the upper bound of the 95% CI 
was >5-fold below the WT Ki Pi. Up and down arrows denote upper and lower kcat/KMchem. limits (see Materials and Methods), and left and right arrows denote upper and 
lower Ki Pi limits. (F) PafA active site with the five mutants possessing large FC2 effects without kcat/KMchem effects shown as spheres, corresponding to the labeled mutants 
in E. Active site residues are colored pink. (G) Front and back views of FC2 and FC3 effects (spheres); FC2 effects are those shown in D and FC3 effects are shown for 
p < 0.01. (H) Scatter plot of catalytic and FC3 effects for mutants with FC3 effects (p < 0.01). Error bars correspond to 95% CIs, as in E. The red dashed line is the best 
fit line to mutants with significant FC3 and catalytic (kcat/KMchem) effects, excluding the active site mutants. 
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Fig. 7. Functional Component 4: mutational effects on phospho-enzyme intermediate hydrolysis. (A) Schematic of the PafA catalytic cycle with possible rate-limiting 
steps under saturating (kcat) and sub-saturating (kcat/KM) conditions. (B) Structure showing positions with decreases in kchem,2 (p < 0.05 and p < 0.1 in dark and light blue, 
respectively) upon Val and/or Gly substitution (spheres). Positions lacking an estimate of kchem,2 for both substitutions are light gray ribbons. (C) Scatter plot comparing 
the magnitude of mutational effects on the rate of phospho-enzyme hydrolysis (kchem,2, or FC4) and effects on kcat/KMchem for MeP. Limits are denoted by red chevrons 
pointing in limit directions (see Supplementary Text S6). 
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Fig. 8. Anatomy of an enzyme. (A) Conservation of residues across a broad metagenomic alignment of PafA-like AP superfamily members. (B) Spearman’s rank 
correlation coefficients for comparisons of functional parameters against residue conservation (information content). Error bars denote bootstrap 95% CIs. (C) 
Decomposition of PafA function in terms of Functional Component Analysis and misfolding effects (fa), including the folding effects sensitive to temperature or Zn2+. 
Structures show the composite of Val and Gly substitution effects for each parameter. Temperature and Zn effect, MeP kcat/KMchem, and FC1–4 structures are reproduced 
from Figs. 3 to 7; the fa and MeP kcat/KMobs structures show the union of Val and Gly mutant effects (spheres; p < 0.01), coloring by the larger effect when both were 
measured. The FC2/3 structure shows the union of FC2 (blue) and FC3 (yellow/red) effects. 
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