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Abstract 

Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene 

transcription. Despite their unique intrinsic sequence preferences, in vivo genomic occupancy profiles of 

TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both 

intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, 

non-coding genetic variation. Biophysical models trained on in vitro TF binding assays can estimate 

intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, 

these models cannot adequately explain context-specific, in vivo binding profiles. Conversely, deep 

learning models, trained on in vivo TF binding assays, effectively predict and explain genomic occupancy 

profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical 

interpretation. To reconcile these complementary models of in vitro and in vivo TF binding, we 

developed Affinity Distillation (AD), a method that extracts thermodynamic affinities de-novo from deep 

learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the 

influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast 

and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs 

on TF binding as measured by diverse in vitro assays with superior dynamic range and accuracy 

compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our 

results highlight thermodynamic affinity as a key determinant of in vivo binding, suggest that deep 

learning models of in vivo binding implicitly learn high-resolution affinity landscapes, and show that 

these affinities can be successfully distilled using AD. This new biophysical interpretation of deep 

learning models enables high-throughput in silico experiments to explore the influence of sequence 

context and variation on both intrinsic affinity and in vivo occupancy. 

 

Keywords: Transcription factors, high-throughput binding assays, deep learning, protein-DNA binding, 

gene regulation, binding affinity 
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Background 

Transcription factors bind DNA in a sequence-specific manner to regulate gene expression and thereby 

maintain cellular homeostasis and regulate organismal development. As TFs exert control over cellular 

differentiation and immune responses, they are implicated in cardiovascular diseases, inflammatory 

disorders, and many cancers and represent potential drug targets (1–4). Further, complex trait-

associated variants are enriched in regulatory DNA and often disrupt TF binding sites(5–7). 

Comprehensive characterization of TF binding is essential to understand gene regulation, predict and 

interpret disease-associated non-coding variation, design novel regulatory circuits in synthetic biology 

and rationally design transgenes for biotechnology and gene therapy (8–10). Consequently, a 

quantitative and predictive understanding of TF binding has been a longstanding goal in biology (11). 

Thermodynamic approaches have been successfully applied to model and quantitatively predict 

interactions between individual TFs and naked DNA sequences in vitro (12) and to map comprehensive 

binding affinity landscapes (13). In a simple two-state model, the probability of binding follows a 

logarithmic relationship with TF concentration: TF binding increases linearly at concentrations below 

50% occupancy (at which the concentration = Kd) and then asymptotes once available sites have been 

saturated. A key strength of this model is its generalizability: in principle, we can quantitatively predict 

binding to any pool of DNA sequences as a function of TF concentrations as long as we know the affinity 

for each. In practice, however, the possible DNA sequence space is too large to directly measure Kds for 

every possible sequence of interest. Instead, researchers have developed models that can learn affinities 

from large experimental datasets that measure TF binding to many sequences. The most widely-used 

model is the position weight matrix (PWM), which is a linear mononucleotide model and an early 

application of the perceptron algorithm (14). PWMs represent binding specificity as the enrichment of a 

particular nucleotide at a given position within a TF target ‘motifs’ (15,16). These motifs can then be 

used to scan arbitrary sequences of interest and identify TF-specific binding sites (11,17,18). 

In recent decades, a wide variety of technologies have been developed to profile TF specificity in vitro 

and create vast TF-specific motif catalogs. Universal PBMs (19) measure TF binding to all possible k-

mers, genomic-context PBMs (20) measure TF binding to sequences of putative genomic binding sites, 

SELEX-seq (21) utilizes in vitro selection to explore DNA binding preferences across millions of 

sequences, and MITOMI (22) provides high-resolution affinity measurements of TF-DNA interactions. 

While motifs derived from the same data typically explain the majority of observed in vitro binding, a 

surprising amount of variance often remains unexplained, particularly when motifs are embedded 

within longer and more complex sequences (23,24). The presence of different sequence contexts, even 

when these contexts are not predicted to have any binding by traditional PWM models, can have strong 

impacts (positive or negative) on actual binding energies (20,25–33). 

The performance of motif-based models suffers further when attempting to predict genome-wide TF 

binding to chromatinized DNA in cells (Supplement Fig. S1). New and powerful assays capable of 

quantifying genome-wide TF binding in cells (e.g. ChIP-seq (34,35), ChIP-exo (36), ChIP-nexus (37), 

CUT&RUN (38,39), etc.) have yielded >500 and >2600 publicly available immunoprecipitation datasets 

for the Yeast Epigenome (40) and human/mouse ENCODE (41) initiatives. While high-affinity in vitro-

derived motifs for a given TF are typically among the most enriched sequences in a ChIP-seq dataset, 

many genomic loci predicted to be bound are not occupied, and many TFs bind loci lacking apparent 
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motifs (42). This discrepancy could reflect an increased importance of additional extrinsic factors beyond 

TF-DNA affinity in specifying proper localization in cells (e.g. cooperative and competitive interactions 

between TFs, local chromatin state, and three-dimensional chromatin architecture (11,43)) or could 

simply reflect the fact that motif-based additive models that do not capture impacts of sequence 

context necessary to accurately model specificity (24). The current failure of in vitro-derived specificity 

models to accurately predict TF occupancy in vivo is often cited as evidence that the thermodynamics of 

TF/DNA interactions are not the primary determinants of binding in cells. Here, we ask the question in 

an alternate way: to what extent do state-of-the-art models learn the thermodynamics of TF/DNA 

interactions when predicting in vivo occupancies? 

Convolutional neural networks (CNNs) are a class of deep learning models that can map complex inputs 

(e.g. DNA sequences) to associated outputs (e.g. measures of TF binding occupancy) by learning 

complex, non-linear functions composed of hierarchical banks of de novo pattern detectors. A CNN with 

a single pattern detector (convolutional filter) can learn the same scoring function as a simple PWM. 

However, by using multiple hierarchical banks of multiple convolutional filters, CNNs can easily encode 

arbitrarily complex higher-order patterns of motifs and their dependencies enabling them to learn cis-

regulatory sequence syntax without explicit knowledge or specification of these features. Hence, CNNs 

(e.g. DeepBind (44), DeepSEA (45), BPNet (46) and Enformer(47)) have been recently used to learn 

predictive sequence models of in vivo transcription factor binding. These models have proven useful to 

predict effects of genetic variants on context-specific TF binding(45,47). Further, model interpretation 

frameworks have been developed to explain the predictions of these models thereby enhancing our 

understanding of TF target site sequence syntax, impacts of cooperation and competition between TFs, 

effects of nucleosomes, and chromatin-mediated cooperativity (46). However, these models typically 

cannot extract quantitative information about binding affinities or how they may influence occupancy. 

We therefore still lack the pivotal link that connects state-of-the-art models with a scalable and 

predictive biophysical understanding of TF binding. 

To address this gap, we introduce Affinity Distillation (AD), which leverages a recently developed and 

highly accurate convolutional neural network model (BPNet) and a marginalization technique to allow 

high-throughput determination of thermodynamic affinities from abundant and physiologically relevant 

in vivo occupancy data (Fig. 1A). AD systematically injects sequences of interest within hundreds of 

randomized sequence contexts and then uses trained BPNet models to predict summed binding counts, 

thereby isolating the energetic impacts of a sequence of interest. This in silico marginalization at scale 

results in scores that are strongly linearly correlated with in vitro-measured relative binding energies 

(ΔΔGs) after training on a wide variety of data types (PB-exo, ChIP-seq, and ChIP-nexus) from both yeast 

and human cells. In all cases, systematic comparisons between AD and other best-in-class predictive 

approaches establish that AD outperforms existing motif-based and NN-based methods. AD also 

successfully predicts subtle differences in binding between closely related paralogs that share similar 

consensus motifs, enabling differential analyses not previously possible using motifs. Finally, AD can 

adjust predictions non-additively, for instance to properly model non-specific binding, which additive 

models cannot. AD is therefore able to overcome previous limitations of motif-based methods and, by 

making accurate predictions that minimize the effect of genomic sequence context, decipher the 

thermodynamic contributions of sequence affinities. 
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Results 

Affinity Distillation uses in silico marginalization to isolate the thermodynamic contribution of an 

arbitrary DNA sequence 

BPNet takes one-hot encoded DNA sequences and predicts a decomposed binding profile: the total 

signal (read counts) and the profile shape (base-resolution distribution of reads). To estimate affinities 

for a sequence of interest, we trained BPNet models on 1 kb regions surrounding reproducible peaks 

within each dataset (Fig. 1A). In each case, we tuned hyperparameters and evaluated performance using 

different sets of genomic regions in distinct chromosomes (see Methods). After training, we interpreted 

the models using DeepSHAP, which decomposes model output predictions into contribution scores from 

individual nucleotides. We evaluated the resulting models by: (1) computing Pearson correlations and 

root mean squared error between predicted and observed read counts across regions from test 

chromosomes, (2) inspecting the predicted and observed profile shapes (read distributions) to ensure 

high profile similarity, and (3) inspecting DeepSHAP contribution scores on samples from held-out test 

chromosomes to ensure that predictions accurately highlight expected canonical motifs. 

To estimate affinities for a sequence of interest, we then used an in silico marginalization approach 

(Affinity Distillation) in which we: (1) inserted a sequence of interest into at least 100 random 

backgrounds generated by sampling and randomly shuffling DNA sequences from held-out genomic 

peaks, (2) used the trained BPNet model to predict binding to these sequences, and (3) computed the 

mean marginal effect (marginalization score) of the insert on model output (here, sequencing read 

counts) relative to no insert (mean predicted log count ratio, or ∆ log(counts)), thereby regressing to the 

mean of all context-dependent impacts and background effects (48–50). 

To test if this in silico marginalization approach can accurately learn to predict quantitative 

thermodynamic affinities, we: (1) systematically trained BPNet on ChIP-seq data, (2) applied Affinity 

Distillation to predict affinities for sequences that had been characterized previously via in vitro 

thermodynamic assays, and then (3) quantified performance by calculating correlation coefficients and 

root mean squared errors (RMSE) between predicted and measured affinities. To test whether this 

neural network approach enhanced accuracy and/or precision relative to simpler models (51), we 

compared Affinity Distillation prediction performance with a variety of previously published best-in-class 

motif-based algorithms. We tested Affinity Distillation on iteratively more complex systems including 

systematic variations in nucleotides flanking binding sites of yeast TFs, systematic variations to core 

motifs, and general genomic context sequences in human TF systems. 

Affinity Distillation accurately extracts affinities from in vitro PB-exo yeast TF binding measurements  

To assess whether AD can accurately learn quantitative binding affinities from chromatin 

immunoprecipitation (ChIP)-based approaches, we first tested AD on PB-exo data. PB-exo (34,52) 

generates genome-wide TF footprints by incubating a TF of interest with non-chromatinized DNA 

isolated from cells. After cross-linking, the DNA is digested with exonuclease, yielding high-resolution 

footprints of DNA sequence that is protected by TF binding. As PB-exo measurements take place in vitro 

where thermodynamic affinities are the sole determinant of TF occupancy, we expect Affinity Distillation 

to easily learn to accurately predict affinities. To quantitatively assess prediction accuracy, we turned to 

previously published BET-seq (25) data that used a microfluidic platform to quantify relative binding 

energies (ΔΔGs) for the S. cerevisiae model basic helix-loop-helix (bHLH) TFs Pho4 and Cbf1 interacting 
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with all possible 5-nucleotide combinations flanking their known E-box consensus site 

(NNNNNCACGTGNNNNN, approximately 106 double-stranded DNA (dsDNA) sequences) (Fig. 1A). As a 

baseline comparison between experiments, we first plotted log-transformed PB-exo read counts against 

BET-seq-measured ΔΔGs for the 884 and 294 NNNNNCACGTGNNNNN sequences that existed within the 

100 bp windows of the PB-exo summits of Pho4 and Cbf1, respectively. Log-transformed PB-exo raw 

read counts were reasonably well-correlated with BET-seq-measured ΔΔGs over a 2-3 kcal/mol dynamic 

range (r =- 0.73, RMSE = 4.434 and r = -0.50, RMSE = 3.655 for Pho4 and Cbf1, respectively), as expected 

for a comparison between two somewhat similar in vitro experiments (Fig. 1B).  

Next, we sought to test whether Affinity Distillation marginalization could accurately isolate energetic 

impacts of NNNNNCACGTGNNNNN sequences from PB-exo experiments and improve this correlation. 

We first trained the BPNet model to predict total counts and binding profiles for 4,558 of the 5,686 Pho4 

binding regions and 846 of the 1,057 Cbf1 binding regions from the PB-exo data. Predicted binding 

profiles closely matched experimental observations, with contribution scores from DeepSHAP 

interpretations highlighting the expected E-box motifs underlying predicted areas of strong binding (Fig. 

1C). Log-transformed count predictions correlated strongly with PB-exo experimental observations for 

both this training set (r = 0.91 and 0.81, respectively) and for remaining held-out regions from 

chromosomes 1 and 12 for Pho4 and chromosomes 5 and 6 for Cbf1 (r = 0.87 and 0.79, respectively) 

(Fig. 1D).   

We then asked how Affinity Distillation marginalization scores correlated with BET-seq-measured ΔΔGs 

for the set of 884 Pho4 and 294 Cbf1 sequences present in both BET-seq and PB-exo datasets. The 

correlations were notably stronger than the baseline comparison (r = -0.91, RMSE = 1.772 and r = -0.74, 

RMSE = 2.063 for Pho4 and Cbf1, respectively). This suggests that in silico marginalization can denoise 

the counts associated with each match and account for various sources of experimental bias and 

variability to isolate thermodynamic impacts (Fig. 1E). To test whether the trained Affinity Distillation 

model can generalize beyond sequences in the PB-exo dataset to accurately predict affinities for as-yet-

unseen sequences, we compared Affinity Distillation marginalization scores with ΔΔG measurements for 

all 1,048,576 possible NNNNNCACGTGNNNNN sequences in the BET-seq dataset, many of which are not 

found within the S. cerevisiae genome. Predictions remained tightly correlated with measurements (r =-

0.89 and -0.77 for Pho4 and Cbf1, respectively; Fig. 1F), establishing the generalizability of our approach. 

These results corroborate other reports that modern neural networks exhibit good generalization and a 

remarkably small difference between performance on training data and unforeseen examples (53,54), 

independent of the number of parameters in the network (55).  

Affinity Distillation predictions can be calibrated to yield absolute affinities 

The raw predictions from the last layer of a neural network can be rich in information but their scale 

does not always have meaning (56). In this case, Affinity Distillation outputs marginalization scores that 

correlate with measured differences in binding energy but have no physical meaning on an absolute 

scale. Nevertheless, this observed linear correlation makes it possible to calibrate marginalization scores 

to binding free energies with only a small number of absolute affinity measurements (57,58). Using 

<1000 measurements sampled uniformly at random from the BET-seq dataset, we calibrated 

marginalization scores to derive ΔΔG values directly for all 1,048,576 sequences (r = 0.89, RMSE = 0.204 

kcal/mol and r = 0.77, RMSE = 0.409 kcal/mol for Pho4 and Cbf1, respectively; see Methods; Fig. 1G). 
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This calibration step can be generalized to any sequence-scoring method, allowing for direct comparison 

of prediction error (RMSE) while bypassing the need to compute motif similarity or alignment (59). 

Affinity Distillation predicts binding more accurately than other widely-used computational tools 

To test if simpler algorithms could achieve the same performance, we predicted binding to the same 

1,048,576 DNA sequences using three widely used best-in-class motif discovery tools that employ 

different modeling approaches: Weeder, an enumeration-based method shown to thoroughly cover the 

motif search space (60,61); the MEME suite member STREME, an optimization-based approach shown 

to perform well on ChIP-seq data (62); and MoDISco, a NN-based approach that uses importance scores 

to systematically summarize recurring predictive sequence patterns into consolidated motifs (46,63). 

Direct scoring is the best tool for assessment since it quantitatively reflects the similarity of in vitro 

binding preferences for TFs (59) and enables the computation of root mean squared errors in the same 

units as the dependent variable without relying on a particular matrix/motif similarity metric. In contrast 

to Affinity Distillation, which returns only a single high-confidence prediction and requires no parameter 

tuning beyond the original model training, these alternative approaches return multiple, often similar, 

motifs and it can be challenging to determine which returned motif is the most biophysically relevant 

(Supplement Section 2). To ensure a fair comparison, we scored all sequences in the library using the 

top 10 motifs returned by each algorithm (see Methods), calibrated scores using the same calibration 

process described above, and calculated an overall root mean squared error (RMSE) between 

predictions and measurements in absolute energetic units (kcal/mole).  

Across all motifs, Affinity Distillation had a dramatically lower (i.e. more accurate) RMSE for Pho4 

predictions (0.204 kcal/mol, corresponding to a 1.4-fold change in binding) than Weeder (mean RMSE = 

0.396 for 10 motifs), STREME (mean RMSE = 0.433 for 8 motifs), and MoDISco (mean RMSE = 0.391 for 9 

motifs) (Fig. 1H; Supplement Section 3). In addition, no single predicted Pho4 motif from any of these 

methods approached the accuracy of the Affinity Distillation model. Although improvements were more 

modest for Cbf1, Affinity Distillation still showed the greatest predictive accuracy (RMSE = 0.409 

kcal/mol, compared with mean RMSE values of 0.507 from 9 motifs for Weeder, 0.581 from 7 motifs for 

STREME, and 0.610 from 9 motifs for MoDISco; Fig. 1I; Supplement Section 3). Together, these results 

establish that Affinity Distillation can accurately learn and generalize how changes to DNA sequence 

impact TF binding energies from in vitro data with greater accuracy than widely-used motif discovery 

methods and without the need to select which motif among the outputs is the most biophysically 

relevant. 

Affinity Distillation extracts affinities from models of in-vivo TF binding in yeast 

In cells, extrinsic factors such as cooperativity and competition with other proteins and variations in 

local chromatin accessibility alter TF binding (64). If these extrinsic factors predominantly determine TF 

occupancy in vivo, we expect a significant drop in the ability of Affinity Distillation to successfully predict 

binding energies measured for a single TF interacting with DNA in vitro. To test this, we performed ChIP-

nexus experiments with cross-linked TFs and DNA in yeast cells and then digested TF-bound DNA with an 

exonuclease to generate high-resolution binding footprints. As Pho4 is a TF that translocates to the 

nucleus and binds DNA in response to phosphate starvation, Pho4 experiments were performed under 

low phosphate conditions while Cbf1 experiments were performed under standard growth conditions. 

We obtained 1,621 and 1,174 genomic regions exhibiting statistically significant and reproducible 
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enrichment of ChIP-nexus signals for Pho4 and Cbf1, respectively (Supplement Fig. S8; see Methods) 

(37). 

We then trained BPNet neural network models on these in vivo data, predicted binding affinities via 

Affinity Distillation, and compared Affinity Distillation-predicted affinities with experimentally measured 

ΔΔGs (Fig. 2A). After training on 1,297 peaks and 939 peaks for Pho4 and Cbf1, BPNet-predicted log-

transformed read counts for held-out chromosomes were well-correlated with experimental 

measurements (r = 0.66 and 0.72; Fig. 2B), predicted nucleotide-resolution binding profiles matched 

observed footprints, and DeepSHAP interpretations revealed canonical E-box motifs (Fig. 2C). As a 

baseline comparison between in vivo binding measurements and in vitro affinities, we again plotted raw 

log-transformed ChIP-nexus read counts against measured ΔΔGs for the 482 and 324 Pho4 and Cbf1 

ChIP-nexus peaks containing particular NNNNNCACGTGNNNNN sequences measured within the BET-seq 

library. In comparison with PB-exo data, observed log-transformed ChIP-nexus raw counts were 

significantly more poorly correlated with BET-seq-measured relative free energies (r = -0.41, RMSE = 

5.879 and r = -0.61, RMSE = 6.851 for Pho4 and Cbf1, respectively; Figs. 2D, 1D), particularly for Pho4, 

consistent with an increased importance of other extrinsic factors for properly localizing TFs in cells.  

Despite a significant drop in the correlation between raw ChIP-nexus read counts and measured 

affinities, Affinity Distillation remained capable of accurately predicting binding affinities for both 

genomic matches present in both datasets (r = -0.81, RMSE = 1.092 and r = -0.82, RMSE = 1.970 for Pho4 

and Cbf1, respectively) (Fig. 2E) or for all 1,048,576 possible NNNNNCACGTGNNNNN sequences (r = 

0.82, RMSE = 0.253 and r = 0.81, RMSE = 0.373 for Pho4 and Cbf1, respectively) (Fig. 2F), with this strong 

linear correlation facilitating calibration of predicted marginalization scores into energy space. 

Affinity Distillation again predicted in vitro affinities more accurately than Weeder (mean RMSE = 0.392 

and 0.517 for Pho4 and Cbf1), STREME (mean RMSE = 0.418 and 0.608 for Pho4 and Cbf1), and MoDISco 

(mean RMSE = 0.325 and 0.416 for Pho4 and Cbf1) (Figs. 2H,I; Supplement Section 3). Together, these 

results establish that Affinity Distillation was able to successfully extract affinities from TF binding in vivo 

even when the observed raw in vivo signal for the native genomic regions was only moderately 

correlated with measured affinities. 

Affinity Distillation can decipher the differential specificity of paralogous TFs 

As a next test of Affinity Distillation’s performance, we sought to determine whether the algorithm 

could correctly predict differential binding for paralogous TFs that bind very similar motifs yet target 

distinct genes in vivo (Fig. 3A). Although Pho4 and Cbf1 share a similar E-box motif (Fig. 3B), they 

perform different functions in cells: phosphate starvation leads to dephosphorylation and nuclear 

localization of Pho4, which drives the expression of genes associated with phosphate scavenging; Cbf1 is 

upregulated under replication stress and associates with other TFs to activate or repress a wide variety 

of downstream target genes (29,65–68). Consistent with these distinct physiological roles, only a small 

fraction of peaks were bound by both TFs in the ChIP-nexus data, where only Pho4 was profiled under 

phosphate starved conditions (Fig. 3C). In prior ChIP-seq experiments, where both Cbf1 and Pho4 were 

tested under phosphate starved conditions, more than half of the accessible consensus ‘CACGTG’ sites 

were preferentially bound by Cbf1 alone or by both proteins (Fig. 3D) (68). This unique localization is 

thought to result, at least in part, from different intrinsic affinities to genomic regions (29,30) such that 

Cbf1 can outcompete Pho4 at consensus genomic loci that would otherwise be Pho4-occupied (29,69). 
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Here, we investigated whether Affinity Distillation can learn to predict subtle binding affinity and 

specificity differences between TF paralogs by training the model on Pho4 and Cbf1 in vivo ChIP-nexus 

data and then attempting to predict differential Pho4 and Cbf1 binding observed in in vitro genomic 

context protein binding microarray (gcPBM) experiments. gcPBM experiments quantify binding of 

fluorescently-labeled Pho4 or Cbf1 proteins to 20,414 surface-immobilized 60 nucleotide dsDNA probes, 

each of which contains a central 36-nucleotide sequence corresponding to a genomic locus bound by 

either Pho4, Cbf1, or both in cells; prior direct comparisons between measured affinities and gcPBM 

probe intensities have established that log-transformed probe intensities correlate with absolute 

binding affinities over a wide dynamic range (32,70,71). 

Observed ChIP-nexus log-transformed counts for Pho4 and Cbf1 were relatively poorly correlated with 

observed log-transformed gcPBM intensities (r = 0.27 and r = 0.16 for Pho4 and Cbf1; Fig. 3E). 

Nevertheless, Affinity Distillation predictions after training on the same data again showed dramatically 

improved accuracy (r = 0.85, RMSE = 0.409 and r = 0.86, RMSE = 0.604 for Pho4 and Cbf1; Fig. 3F). As 

with previous test applications (Fig. 2), the RMSE between predictions and observations was significantly 

lower (i.e. more accurate) for Affinity Distillation than for the Weeder2, STREME and MoDISco motif-

prediction algorithms without a need to select from a range of potential motifs (Fig. 3G; Supplement 

Section 3).  

Next, we tested whether Affinity Distillation could accurately predict differential binding preferences 

between these paralogs. Comparing measured per-probe intensities from Pho4 and Cbf1 gcPBM 

experiments reveals three distinct populations: probes equally bound by both proteins (Fig. 3H, gray), 

probes preferentially bound by Cbf1 (Fig. 3H, red), and probes preferentially bound by Pho4 (Fig. 3H, 

blue). Here, we quantify a paralog-specific ‘differential signal’ as the residual from the best fit line for 

Cbf1 vs. Pho4 log-transformed intensities such that positive and negative differential signals report on 

the degree to which a given probe is preferentially bound by either Pho4 or Cbf1, respectively.  

Consistent with prior work (22,68), sequences with a T nucleotide 5’ to the CACGTG consensus are Cbf1-

preferred (lower differential signal) and sequences with a C/G nucleotide 5’ to the CACGTG consensus 

are Pho4-preferred (higher differential signal), with the mean differential signals significantly different 

between the two groups (p < 1x10-6 evaluated using Welch’s T-test for the means of two independent 

samples of scores with unequal variances; Fig. 3I). Although Weeder2 had been the best-performing 

alternative algorithm in predicting binding of either protein in isolation (Fig. 3G), it was unable to 

accurately distinguish probes preferred by one paralog over another (r = 0.18; Fig. 3J). By contrast, 

Affinity Distillation accurately identified paralog-preferred genomic loci (r = 0.75; Fig. 3J). 

Affinity Distillation can improve the differential classification of regulatory targets 

To test if an enhanced ability to predict paralog-preferred loci improves the identification of regulatory 

networks in cells, we turned to previously published Pho4 gene expression data from wildtype cells (WT) 

and cells lacking Cbf1 (ΔCbf1) collected under high and no phosphate conditions (as genes regulated by 

Pho4 binding are expressed only upon phosphate starvation) (68). These data revealed 4 classes of 

genes: (1) Pho4-regulated genes (Fig. 3K, blue), which were activated by Pho4 only under no phosphate 

conditions in the wildtype cells; (2) Cbf1-preferred genes (Fig. 3K, red), which were activated by Pho4 

only when Cbf1 is absent (in ΔCbf1 but not WT); (3) always active genes (Fig. 3K, light gray), which were 

expressed in all cases; and (4) inactive genes (Fig. 3K, black), which were never expressed (see Methods) 
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(29). If Affinity Distillation’s ability to discriminate Pho4-regulated from Cbf1-preferred binding sites 

allows more accurate recapitulation of in vivo regulatory networks, we expect Affinity Distillation-

predicted differential signals to accurately identify bona fide Pho4-regulated targets. 

Even though the observed gcPBM Pho4 signal was not significantly different between genomic loci 

classified as Pho4-regulated or Cbf1-preferred (Fig. 3L), the observed differential signal was significantly 

higher for Pho4-regulated genes (evaluated using Welch’s T-test for the means of two independent 

samples of scores with unequal variances; Fig. 3L). Consistent with previous observations that Weeder 

cannot accurately discriminate Pho4- from Cbf1-preferred loci (Fig. 3J), Weeder-predicted intensities did 

not differ between the two classes (Fig. 3M). Nevertheless, Affinity Distillation-predicted differential 

intensities clearly distinguished the two classes (p = 7.3x10-5;Fig. 3M), establishing that an enhanced 

ability to learn context-dependent preferences can provide physiologically-relevant insights into 

regulatory networks. 

Affinity Distillation enhances prediction accuracy by matching the dynamic range of measured 

affinities 

We hypothesized that Affinity Distillation likely outperforms traditional motif-based representation 

models because it captures a high-dimensional representation of the binding landscape that accounts 

for the fact that TFs recognize distinct binding sites with a wide range of affinities via different binding 

mechanisms and protein conformations (24,32,72–74), many of which are not accurately modeled by a 

motif or PWM. To test this, we plotted the distribution of log-transformed gcPBM intensities for Pho4 

(Fig. 4B, blue) along with predicted log-transformed intensities from Affinity Distillation, STREME, 

MoDisco, and Weeder trained on Pho4 ChIP-nexus data (Fig. 4B, orange). The experimentally observed 

log-transformed gcPBM intensity distribution is composed of a large approximately Lorentzian low-

intensity peak (representing low-affinity background binding) and a high-intensity tail of specific binding 

spanning 3 orders of magnitude (Fig. 4B, blue). Of the 4 predicted distributions, Affinity Distillation’s 

distribution most closely matched this observed distribution, with a single background binding peak and 

a high-affinity tail extending over the largest dynamic range (log-transformed standard deviation of 0.77 

for the observed distribution vs. 0.66, 0.63, 0.61, and 0.60 for AD, Weeder, MoDISco, and STREME 

predictions, respectively) (Fig. 4B,C). By contrast, predictions for the motif-based predictions were 

truncated at high affinities, regardless of the size of the PWM. Further suggesting that a wide dynamic 

range is essential for accurate binding predictions, the overall root mean squared error of predictions 

was negatively correlated with the observed dynamic range (Fig. 4C). In silico marginalization against 

different sequence backgrounds appeared to aid in maximizing dynamic range, as dynamic range 

increased with the number of backgrounds (Fig. 4D). 

Responsible development and dissemination of powerful algorithms requires transparently evaluating 

prediction accuracy under conditions where the algorithm is likely to perform well and where 

performance may break down. To test the degree to which Affinity Distillation can learn binding 

mechanisms and contexts that do not exist in the yeast genome, we attempted to use the trained model 

to predict Pho4 preferences to all possible short tandem repeats (STRs), a recently-described novel class 

of cis-regulatory element (31,32,75). While the same model architecture successfully learned to predict 

impacts of STRs on binding for mammalian bHLH TFs, STRs are shorter and less frequent in the compact 

S. cerevisiae genome, making the task significantly more challenging. As expected for out-of-distribution 
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effects, applying the standard training protocol to a Pho4 ChIP-nexus model led to poor predictive 

performance (r=0.42; Fig. 4E).  

To improve performance, we turned to data augmentation, which can mitigate a large search space (76) 

and even synthetically generate realistic biological signals (77), by adding negative examples to the 

dataset. For each peak in the training set, we randomly selected a negative region (at least 1 kb outside 

genomic peaks) with the same GC content (within 5%). To maintain a 10:1 ratio of positives to negatives 

in the training set, we then jittered the positive region (peak) 10 times up to 200 bp away from the 

summit. This data augmentation strategy substantially expanded the dynamic range of the predictions 

and increased prediction accuracy (r=0.61; Fig. 4E,F), suggesting a generalizable approach for improving 

performance when attempting to predict affinities for out-of-distribution sequences. 

Affinity Distillation extracts affinities from mammalian ChIP-seq models 

The yeast genome is relatively small, with gene expression controlled primarily by TF binding to gene-

proximal promoters (78), and thermodynamic models based on equilibrium binding affinities have 

previously explained the majority of observed variance in gene expression (79). Therefore, it is perhaps 

not surprising that Affinity Distillation can accurately extract quantitative binding affinities from in vivo 

Tf binding data in yeast. Regulation of transcription in mammalian cells is thought to be significantly 

more complex, depending on transient interactions between promoters and distal enhancers that are in 

turn regulated by the formation of 3D chromatin compartments (80). Here, we tested whether Affinity 

Distillation could still recover quantitative binding affinities for the human glucocorticoid receptor (GR) 

even as the relative importance of extrinsic factors in correct localization increases (Fig. 5A). 

Glucocorticoid receptor (GR) is a broadly-expressed nuclear hormone receptor (NHR) TF containing a 

DNA binding domain, a ligand binding domain, and an activation domain. Upon binding glucocorticoid 

hormones, GR translocates to the nucleus and upregulates a wide variety of developmental, metabolic, 

and immune-associated transcriptional programs (81,82). Using the irreproducible discovery rate (IDR) 

framework (83) to identify reproducible peaks within a prior ENCODE ChIP-seq dataset yielded 17,203 

GR-bound peaks, many of which contained canonical glucocorticoid binding sites (GBSs) comprised of 

inverted GNACA repeats typically separated by a 3 nt degenerate spacer. As ChIP-seq GR experiments 

returned many bound peaks and we anticipate an increased influence of extrinsic factors on binding, we 

trained a larger capacity model (see Methods) on 13,677 peaks after withholding regions from 

chromosomes 8 and 9 (10% of total peaks) as a test set and regions from chromosomes 16, 17, and 18 

(10% of total peaks) as a validation set.  

The model predicted in vivo GR binding with a slightly reduced accuracy as compared to S. cerevisiae 

Pho4 and Cbf1 (Fig. 5B; r = 0.61 for GR held-out test data, compared with r = 0.66 and 0.72 for Pho4 and 

Cbf1 tests) and contribution scores for ChIP peaks often revealed motifs associated with other TFs, 

including the AP-1 motif (84), highlighting that cooperation with other TFs is essential for proper GR 

localization in cells (Fig. 5C). 

In parallel, we used the MITOMI microfluidic platform (22) to quantify affinities (Fig. 5D) for 

recombinantly expressed and purified C-terminally eGFP-tagged GR interacting with two different DNA 

libraries. To enable unbiased identification of GR binding specificities, we first profiled GR binding at a 

single low concentration to a de Bruijn dsDNA library of 740 pseudorandom sequences containing all 

possible 8-mer DNA combinations arranged in a minimally compact space (85) (Fig. 5E), which returns 
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intensity information linearly correlated with relative differences in binding energy (86). Although this 

pseudorandom 8-mer library did not contain any true GNACANNNTGTNC dimeric sites, these 

measurements revealed a strongly preferred monomeric half site (Fig. 5F,G), consistent with prior 

reports that both monomeric and dimeric forms of GR bind in vivo to regulate distinct expression 

programs (87,88). The MITOMI-derived motif closely resembled the ChIP-derived GBS (89) but with a 

preference for GGG instead of AGA upstream of the canonical ACA (see Supplement). 

We then profiled concentration-dependent GR binding to quantify absolute affinities (Kds) for an 

additional 188 dsDNA sequences containing systematic single-nucleotide substitutions within 

monomeric and dimeric versions of the MITOMI- and ChIP-derived high affinity sites (Fig. 5H), synthetic 

GBSs with variable half-site spacings, and several naturally-occurring glucocorticoid response elements 

(GREs) (see Supplement GR tables). Concentration-dependent binding measurements for each sequence 

were globally fit to a Langmuir isotherm to extract Kds (assuming binding stoichiometry remained 

unchanged across sequences); all ∆∆Gs were calculated relative to the ChIP consensus site (Fig. 5I). 

Calculated ΔΔGs were again highly reproducible across replicates (r = 0.98; Fig. 5J). Consistent with 

MITOMI pseudorandom library results and with prior observations that many TF sites are optimized for 

moderate affinities in vivo to facilitate dynamic regulation (90–97), mutations to the ChIP-derived 

consensus that yielded a more symmetric and MITOMI-like motif consistently increased affinities (See 

Supplemental GR table). 

As in previous comparisons, Affinity Distillation accurately predicted ΔΔGs for the entire MITOMI library 

on par with replicates (r = 0.95; Fig. 5K), outperforming Weeder, STREME, and MoDISco, with an RMSE 

of 0.414 kcal/mol compared to mean RMSEs of 0.971 kcal/mol, 1.06 kcal/mol, and 1.12 kcal/mol, 

respectively (Fig. 5L).  

Across all 4 library types (single site substitutions in the dimeric and monomeric sites, alternate half site 

spacers, and GR-bound genomic loci), Affinity Distillation outperformed the best-performing (lowest 

RMSE) alternative algorithm (MoDISco), with the largest performance boost for ChIP-half sites and 

naturally-occurring genomic glucocorticoid response elements (GREs) that had multiple mutations from 

the consensus site (Fig. 5M, N). To explicitly test whether Affinity Distillation’s increased accuracy 

derives from an ability to learn epistatic impacts of nonadditive mutations, we compared predicted 

Affinity Distillation additive predictions and Affinity Distillation-predicted ΔΔGs with measured values for 

libraries of sequences in which pairs of positions were mutated alone and in combination (Fig. 5O; left). 

While additive models continued to predict increasingly deleterious impacts even beyond levels of non-

specific binding (Fig. 5O; middle), Affinity Distillation successfully recapitulated the non-additive effects 

of multiple binding site mutations (Fig. 5O; right). 

Affinity Distillation performance is generalizable across multiple mammalian TF classes and cell types 

Thus far, we have established that Affinity Distillation can extract thermodynamic binding information 

from Pho4, Cbf1, and GR in vivo genome-wide occupancies. However, as the GR NHR binds a relatively 

long binding site with high affinity, thermodynamic binding affinities are more likely to play a dominant 

role in dictating localization. To test whether Affinity Distillation can accurately recover affinities across 

a wide variety of additional TF structural classes and human cell types, we turned to publicly available 

ENCODE ChIP-seq data to train additional TF-specific models for TFs across the bHLH, ETS, and E2F TF 

families: MAX in HeLa-S3 cells (bHLH; 20438 peak regions), c-Myc in HeLa-S3 and K562 cells (bHLH; 
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16391 and 17318 peak regions), GABPA in HepG2 cells and liver tissue (ETS; 6129 and 9543 peak 

regions), and E2F1 in MCF7 cells (E2F; 19373 peak regions).  

We then attempted to predict affinities for up to 30,000 gcPBM probes for each TF or TF family (30) and 

assessed predictive performance (Fig. 6A). Across all 6 TFs, ChIP-seq counts were only weakly correlated 

with measured signal intensities for the same genomic sequences in gcPBM experiments, with Pearson 

correlation coefficients ranging from 0.18 (MAX and myc) to 0.31 (E2F1 with a very limited number of 

probes). 

As a first test of whether Affinity Distillation could more generally learn thermodynamic affinities from in 

vivo ChIP-seq data, we analyzed data for MAX, a bHLH TF that binds to the palindromic CACGTG E-box 

motif either as a homodimer or as a heterodimer with other bHLH proteins such as Myc (98) (Fig. 6B). 

MAX-MAX homodimers are transcriptionally inert, while Myc-MAX heterodimers drive strong 

transcriptional activation by promoting elongation (99–101); as a result, dysregulation of Myc can drive 

oncogenic progression in many human cancers, most commonly through Myc overexpression (102). 

After training on 16,324 peaks from MAX ChIP-seq, predicted log-transformed read counts for held-out 

chromosomes were well-correlated with experimental measurements (r = 0.72). The predicted binding 

profiles matched observed footprints in cells, and DeepSHAP interpretations revealed canonical E-box 

motifs within bound regions (Fig. 6B). Post training, Affinity Distillation was capable of accurately 

predicting binding affinities for the entire gcPBM library and again outperformed all other techniques (r 

= 0.66; Fig. 6B, and Fig. S9). 

Models trained on 12833 peaks from Myc ChIP-seq data were similarly successful in predicting held-out 

read counts and observed binding profiles for two very different cell types (r = 0.77 and 0.71 for 

adherent HeLa cervical cancer cells and suspension K562 lymphoblastoid cells, respectively) (Fig. 6C,D). 

Affinity Distillation was capable of accurately predicting binding affinities for the entire gcPBM library 

after training on two very different cell types (r = 0.77 and 0.76), again outperforming all motif-based 

methods tested (Figs. 6C,D). 

Next, we investigated GABPA, an ETS family TF that recognizes GGA(A/T) consensus sequences via a 

winged helix-turn-helix structure. In addition to being required for GABPB recruitment, GABPA is also 

thought to be a key transcriptional regulator in cell cycle control and metabolism in myeloid cells and 

other cell types (103) (Fig. 6E). As for the other TFs, Affinity Distillation was able to accurately predict 

binding affinities for the entire gcPBM library (r = 0.76 and 0.76). A final comparison for E2F1, a member 

of the E2F family with well-documented roles in cell cycle progression and apoptosis, as well as newly-

emerging roles in metabolic homeostasis and obesity (104), again predicted probe intensities with high 

accuracy despite there being only 8 shared sequences and poor agreement between ChIP-seq derived 

counts and gcPBM intensities (see Methods) (Fig. 6F). 

Discussion 

Traditionally, extracting affinities from in vivo assays has focused on discovering short motifs enriched 

within bound loci and then using these motif-based models to predict DNA binding with somewhat 

limited success (105–107). By contrast, modern machine learning methods such as deep neural 

networks can predict binding with high accuracy but are sometimes dismissed as overparameterized 

black box models with no way to extract biophysical information (108). To remedy this, some studies 

have suggested building stereotyped networks with fixed architectures, sacrificing flexibility in modeling 
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and training to obtain nodes and weights that have explicit biophysical interpretations (109,110). Here, 

we establish that with appropriate correction of experimental biases (Supplement Section 6), deep 

neural networks trained to predict TF binding profiles from ChIP data can learn to predict 

thermodynamic affinities for a wide variety of genomic sequences without a priori restricting 

architectures or weights. 

The development of neural networks capable of accurately predicting binding affinities for novel 

sequences opens up opportunities to perform in silico biophysics experiments at unprecedented scale. 

There are >1060 possible nucleotide combinations for a 100 bp cis-regulatory element, dwarfing the 

sequence space that can be probed by even the highest throughput experiments. The neural network 

model presented here can predict relative binding affinities for millions of sequences per day; moreover, 

these predictions can be calibrated to actual energies with fewer than one thousand in vitro 

measurements. Affinity Distillation can therefore serve as an in silico biophysical oracle capable of 

predicting how systematic variations to central target sites or local sequence context impact binding. 

Indeed, Affinity Distillation has already been used to validate the role of short tandem repeats in TF 

recruitment (32). Though used for validation, the short tandem repeat phenomenon could have in 

theory been discovered through neural networks. In future work, Affinity Distillation could identify 

cooperative regulatory modules by testing the impacts of mutating individual motifs alone and in 

tandem. All of these analyses have been possible with base-resolution networks, but with Affinity 

Distillation, they can be done in the language of thermodynamics.  

Affinity Distillation will be particularly useful in predicting binding to low-affinity DNA-binding sites that 

can be critical for gene regulation (33). As a specific example, developmental enhancers with low-affinity 

binding sites can mediate robust patterns of gene expression when they are organized with optimal 

syntax (111). Accurately predicting binding in these cases  is particularly challenging using current 

techniques, as non-canonical binding motifs are typically disregarded by motif-based methods. As 

another example, Affinity Distillation can predict differential regulation by proteins with extremely 

similar DNA-binding domains that share high-affinity binding preferences but have distinct DNA-binding 

profiles and preferences for low affinity sites (112). Such paralog-specific preferences cause difficulties 

for motif-based models, as the models frequently characterize the common binding sites but fail to 

capture the sites specific to each TF. We have shown that Affinity Distillation is capable of learning 

paralog-specific affinities, enabling us to distinguish between true physiological targets from targets that 

are blocked off by competitive paralogs. Overall, Affinity Distillation matches the paralog-specific 

preferences and the overall dynamic range of observed affinities better than all methods that we 

investigated. 

Conclusion 

In this work, we demonstrated Affinity Distillation, a method that bridges the gap between modern 

neural network models capable of predicting in vivo binding without any mechanistic understanding and 

ground-up biophysical thermodynamic models of TF-DNA interactions. Using an in silico marginalization 

approach developed to interrogate deep learning models, Affinity Distillation learns accurate affinities of 

binding sites, flank variations, genomic sequences, and even paralog-specific affinities, enabling in silico 

differential analyses between related TFs. By providing biophysical interpretations of deep learning 
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models, Affinity Distillation makes it possible to leverage in silico experiments to decipher sequence 

influences on intrinsic affinity and in vivo occupancy. 

 

Methods 

Yeast cell culture.  

The Myc-tagged Pho4 and Cbf1 Saccharomyces cerevisiae strains were obtained from Rick Young’s lab 

(113). For ChIP-nexus, cells were grown in 50 ml of yeast peptone dextrose (YPD) media at 25oC to OD600 

~ 0.8. For Pho4 induction, cells were washed twice with and incubated at 25oC for 2h with 50 ml of 

phosphate-free media (YNB powdered media without phosphates from Fisher Scientific (MP114027812), 

supplemented with 2% glucose and 0.1g/L of sodium chloride).  

Yeast chromatin preparation.  

The yeast chromatin preparation was performed as previously described with minor modifications (52). 

For each experiment, 50 ml of cells were cross-linked at a final concentration of 1% formaldehyde 

(Fisher Scientific) for 15 min at 25oC. The reaction was quenched with 125 mM glycine for 5 min. Cells 

were washed three times with cold wash buffer (10 mM Tris-HCl, pH 7.5, 100 mM NaCl) at 4oC. After the 

last wash, the pellet was snap frozen in liquid nitrogen. The pellet was then resuspended in 700 µl of FA 

lysis buffer (50 mM HEPES-KOH pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% triton-X-100, 0.1% Sodium 

deoxycholate, supplemented with protease inhibitor) and transferred to a 1.5 ml Sarstedt micro tube. 1 

ml of 0.5 mm zirconia/silica beads was added to the tube and cells were lysed in a Mini-BeadBeater 24 

(BioSpec products) for three cycles (3 min ON/5 min OFF). During the OFF cycle, samples were kept on 

ice. Cell lysates were separated from silica beads and collected in a new 1.5 ml tube using a 23G 1” 

needle (BD Microlance) and centrifuged at maximum speed for 4 min at 4oC to pellet the chromatin. The 

supernatant was discarded and the pellet was resuspended in 750 µl of FA lysis buffer supplemented 

with 0.1% SDS. Samples were sonicated with a Bioruptor Pico (Diagenode) for 18 cycles of 30 sec ON and 

30 sec OFF intervals. Chromatin extracts were centrifuged at 16,000 g for 10 min at 4oC and the 

supernatant was used for the ChIP reaction.  

Antibodies.  

For each ChIP, 50 µl of protein G Dynabeads (Invitrogen) was washed three times with 1 ml of FA lysis 

buffer and after the last wash, resuspended in 500 µl of FA lysis buffer. 10 µg of anti-myc tag antibody 

(abcam 9E10) was added to the beads and incubated for 2 hours at 4oC with rotation. Following the 

incubation, antibody-bound beads were washed three times with 1 ml of FA lysis buffer.  

ChIP-nexus.  

Chromatin extract was added to the antibody-bound beads and incubated overnight at 4oC with 

rotation. The ChIP-nexus process was performed as previously described (37), with some modifications. 

Briefly, the chromatin was washed with Nexus wash buffers A to D (wash buffer A: 10 mM Tris-EDTA, 

0.1% Triton X-100; wash buffer B: 150 mM NaCl, 20 mM Tris-HCl, pH 8.0, 5 mM EDTA, 5.2% sucrose, 

1.0% Triton X-100, 0.2% SDS; wash buffer C: 250 mM NaCl, 5 mM Tris-HCl, pH 8.0, 25 mM HEPES, 0.5% 

Triton X-100, 0.05% sodium deoxycholate, 0.5 mM EDTA; wash buffer D: 250 mM LiCl, 0.5% IGEPAL CA-

630, 10 mM Tris-HCl, pH 8.0, 0.5% sodium deoxycholate, 10 mM EDTA) and 10 mM Tris, pH 7.5. End-
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repair and dA-tailing enzymatic reactions were performed using the NEBNext End Repair and NEBNext 

dA-tailing module. The four fixed barcodes (ACTG, CTGA, GACT and TGAC) within ChIP nexus adapter 

mix were ligated with quick T4 DNA ligase. Following barcode extension, samples were treated with 

lambda exonuclease to generate high-resolution transcription factor binding footprints. Following 

reverse crosslinking and ethanol precipitation of DNA, purified DNA fragments were circularized and 

directly subjected to PCR amplification. The ChIP-nexus libraries were then gel purified before 

sequencing. For each factor, at least two biological replicates were prepared side-by-side from 

independent colonies.  

Library sequencing and data processing.  

ChIP-nexus libraries were sequenced in single-end mode (1 X 75 cycles) on a NextSeq 500 instrument. 

The adapters were trimmed using cutadapt (v 1.8.1)(114) and reads were aligned to the Saccharomyces 

cerevisiae (sacCer3) genome using bowtie (v1.1.2)(115). Reads were filtered using SAMtools 

(v1.3.1)(116) to remove unmapped reads and PCR duplicates. Reads aligned to the same position with 

the same barcode, CIGAR string and the SAM flag were deduplicated using nimnexus dedup 

(v.0.1.1)(46). The final filtered BAM file was converted to tagAlign format (BED 3 + 3) using bedtools 

‘bamtobed‘ (v.2.26)(117). Cross-correlation scores were obtained for each file using 

phantompeakqualtools (v.1.2)(118). BigWig tracks containing the strand-specific number of aligned 

5′ read ends (pooled across all replicates) were generated using bedtools genomecov -5 -bg –strand 

<+/−>, followed by bedGraph to BigWig conversion using UCSC bedGraphToBigWig v.4. Peaks were 

called using MACS2 (v.2.1.1)(119) by extending the 5’  ends of reads on each strand using a 150-bp 

window and then computing coverage of extended reads across both strands (shift = -75, extsize = 150). 

For each TF, peak calling was performed on filtered, aligned reads from each replicate using a relaxed 

threshold P=0.1. The ChIP–nexus pipeline performing the described steps (for example, turning raw 

reads in FASTQ format to BigWig coverage tracks and called peaks) is available at 

https://github.com/mlweilert/chipnexus-processing-scripts and https://github.com/kundajelab/chip-

nexus-pipeline. 

PB-exo.  

All the sequencing files and peak files for Pho4 and Cbf1 as well as the control (input) replicates were 

downloaded from the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE93662 (52). The datasets were processed using the ENCODE pipeline: 

https://github.com/ENCODE-DCC/chip-seq-pipeline2  (version:  v1.3.6) with fraglen set to 150 and shift 

set to -75. 

ChIP-seq.  

All the sequencing files for human TFs were downloaded from the ENCODE portal (41) and processed 

using the ENCODE pipeline: https://github.com/ENCODE-DCC/chip-seq-pipeline2  (version:  v1.3.6). For 

the Glucocorticoid receptor data, we used treatment time series ENCSR210PYP at the two hours time 

point ENCSR720DXT. For Myc and MAX in HELA-S3, we used the control run ENCSR000EZM and the 

experiments ENCSR000EZD and ENCSR000EZF, respectively. For Myc in K562, we used the experiment 

ENCSR000EGS and the control run ENCSR000FBB. For GABPA in Hep-G2, we used the experiment 

ENCSR000BJK and the control run ENCSR000BLH. For GABPA in liver tissue, we used the experiment 

ENCSR038GMB and the control run ENCSR019XRC. For E2F1 in MCF7, we used the experiment 
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ENCSR000EWX and the control run ENCSR000EWW. For MAX in NB4, we used the experiment 

ENCSR000EHS and the control run ENCSR000FAM. 

Neural network training and evaluation 

Model architecture.  

We used modified versions of the BPNet architecture. BPNet is a sequence-to-profile convolutional 

neural network that uses one-hot-encoded DNA sequence as input to predict base-resolution read count 

profiles as output. The output of the final convolutional layer (or the bottleneck activation map) serves 

as input for two output heads: (1) a deconvolutional layer for the profile prediction; and (2) a global 

average pooling layer followed by the fully connected layer for total read count prediction. When 

available, control tracks are provided to the model. The full details of BPNet as well as its 

implementation are publicly available (46). 

For the PB-exo models, the input sequences were 546 bp. The first convolutional layer used 64 filters of 

width 21 bp, followed by 6 dilated convolutional layers (each with 64 filters of width 3). The 

deconvolutional layer had a filter width of 75 bp and the output profile length was 200 bp. 

The ChIP-nexus models had the same number of layers, but with 25 filters in each layer instead of 64. 

The deconvolutional layer had a filter width of 25 bp, resulting in output profile length of 250 bp. 

All the mammalian ChIP-seq models had the same architecture. The input sequences were 1346 bp. The 

first convolutional layer used 64 filters of width 21 bp, followed by 6 dilated convolutional layers (each 

with 64 filters of width 3). The deconvolutional layer had a filter width of 75 bp and the output profile 

length was 1000 bp. 

For all models, we set the count prediction head relative weight compared to the profile prediction head 

to 100. All the convolutional and deconvolutional layers used in our models were reverse-complement 

layers (120).  

Model training.  

For the PBexo models, the reported peaks (52) were divided for training, validation, and testing. For 

Cbf1, regions from chromosomes III and XV (106 regions, 10%) were used as the tuning set for 

hyperparameter tuning. Regions from chromosomes V and VI (105 regions, 10%) were used as the test 

set for performance evaluation. The remaining regions (846 regions, 80%) were used for model training. 

For Pho4, regions from chromosomes V and IX (576 regions, 10%) were used as the validation set. 

Regions from chromosomes I and XII (552 regions, 10%) were used as the test set. The remaining regions 

(4558 regions, 80%) were used for model training. 

For the ChIP-nexus models, overlap peaks were divided for training, validation, and testing. For Cbf1, 

regions from chromosome VII (118 regions, 10%) were used as the tuning set for hyperparameter 

tuning. Regions from chromosomes IX and XI (117 regions, 10%) were used as the test set for 

performance evaluation. The remaining regions (939 regions, 80%) were used for model training. For 

Pho4, regions from chromosome XV (162 regions, 10%) were used as the validation set. Regions from 

chromosomes VIII and X (162 regions, 10%) were used as the test set. The remaining regions (1297 

regions, 80%) were used for model training. 
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For human ChIP-seq models, IDR peaks were divided for training, validation, and testing. Regions from 

chromosomes 8 and 9 (10%) were used as the test set for performance evaluation. Regions from 

chromosomes 16, 17, and 18 (10%) were used as the tuning set for hyperparameter tuning. The 

remaining regions were used for model training. 

Outside of these particular splits, cross validation was performed in five folds, achieving similar 

performance across folds (See Supplement). Hyperparameters were adjusted to yield best performance 

on the tuning set. During training, we deployed a uniform jitter with a maximum shift of 200 bp of the 

regions in each batch. All neural network models were implemented and trained in Keras (v.2.2.4) 

(TensorFlow backend v.1.14)(121,122) using the Adam optimizer (123) with learning rate 0.001 and early 

stopping with patience of ten epochs.  

Model cross-validation.  

In addition to the aforementioned training, all models were evaluated in five fold cross-validation (See 

supplemental materials). Each fold divided the genome into contiguous non-overlapping regions with at 

least a 2 Kbp buffer between the end of one set and the beginning of another. The folds always assigned 

10% of peaks to the testing set and 10% of peaks to the validation set. The remaining peaks were 

assigned to the training set. 

DeepSHAP contribution scores.  

We used the deep explainer implementation of SHAP (124), which is an updated version of the DeepLIFT 

algorithm (125), to interpret all models. We used a shuffled reference with 20 random shuffles. At each 

position in the input sequence, we iterated over the one-hot encoding possibilities and computed the 

hypothetical difference-from-reference in each case. We then multiplied the hypothetical differences-

from-reference with the multipliers to get the hypothetical contributions. 

For each of the one-hot encoding possibilities, the hypothetical contributions were then summed across 

the ACGT axis to estimate the total hypothetical contribution of each position. This per-position 

hypothetical contribution was then projected onto whichever base was present in the hypothetical 

sequence. The reason this is a fast estimate is that the multipliers are computed once using the original 

sequence, and are not computed again for each hypothetical sequence. 

GC-matched augmentation.  

For the GC-augmented models, the GC content of each peak region was computed. Then the negative 

set, which is at least 1Kbps from any peak, was searched for a window that most closely matches the GC 

content of each peak region. Jittering the positive regions ensured a positive:negative ratio of 10:1. 

Finally, the augmented dataset was divided by chromosome in a way that ensured no overlap between 

training, validation, and testing.  

Affinity Distillation 

In-silico marginalization.  

In silico marginalization relies on the counts head of BPNet. To obtain a marginalization score for a 

sequence: (1) Background sequences are generated by dinucleotide shuffling DNA sequences from held-

out genomic peaks,  (2) the sequence of interest is inserted at the center of the background sequences, 

(3) the model predictions from the count head are stored for both the background sequences and the 
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sequences with the insert, (4) the mean of the differences between the two sets of predictions (mean 

predicted log count ratio) across the different backgrounds (∆ log(counts) ) is the marginalization score 

for the sequence of interest. 

Calibration.  

Calibration performs inference of the binding free energies using a regression model. Using a sample of 

in vitro measurements, we fit a linear regression model with the generated marginalization scores as the 

input. The resulting function recovers the inference we would have obtained if the neural network 

model was predicting in the relative free energy space. We can generalize to other sequences, without 

access to measurements, by deploying a correction for inference using the fitted regression model. 

Motif discovery methods 

STREME. STREME from MEME suite (v.5.4.1)(126) was run on the central 100bp around summits of 

peaks. Prior reports confirm that using the central 100 bp works extremely well with ChIP-seq for motif 

discovery (127). Shuffled set was used as the control. 

Weeder2. Weeder 2.0 (128) was run on the central 100bp around summits of peaks. For yeast datasets, 

all peak regions were used. For human TFs, Weeder2 was run on a sample of 1000 regions (flag -top 

1000). All runs were performed using ChIPseq mode (flag -chipseq). 

TF–MoDISco. TF–MoDISco–Lite (v2.0.7)(63) was run on counts contribution scores for each TF (using all 

peak regions bound by the TF on autosomes) with sliding windows of size 20 bp, flanks of size 5bp, the 

false-discovery rate threshold of 0.05 (target_seqlet_fdr), and a maximum of 20,000 seqlets per 

metacluster. All CWMs were trimmed down to their final lengths by removing flanking positions using 

the default trimming function and threshold. For all discovered motifs, CWMs were computed from the 

aligned seqlets by averaging the base frequencies and contribution scores, respectively. All the results 

presented in this study also held when using TF–MoDISco (v.0.5.5.5), which runs a different sorting 

algorithm. 

Methods Comparison.  

To quantitatively assess the performance of different methods as well as Affinity Distillation, we used 

each method to compute the affinities across all sequences in the given libraries. For each motif 

discovery method, we used all the returned motifs, up to the top ten motifs. For motif scoring, both the 

sequence and its reverse complement were scored and the higher score was chosen (Supplement 

Section 7). The scores for each method, including Affinity Distillation, were calibrated using the same 

calibration set. Finally, we calculated and reported the post calibration RMSE for each method. 

gcPBM.  

For Pho4 and Cbf1 gcPBM (29), the fluorescent intensities (Alexa 488 Adjusted) were downloaded from 

GEO, accession GSE163512. We took the natural log of the intensities. For multiple measurements of the 

same sequence, we computed the mean. For Pho4, the 400nM set of measurements was used, and the 

1µM set was used for Cbf1. 

For human TFs, the fluorescent intensities were downloaded as log normalized gcPBM signals (30) from 

GEO, accession number GSE97794. The 36-mer gcPBM probes (both putative binding sites and negative 

controls), their genomic coordinates, and the associated measurements were downloaded from the 
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same study. For GABPA, the 100nM set of measurements was used, and the 250nM set was used for 

E2F1. 

Differential Specificity Methods.  

We compared gene expression data from (68) downloaded from GEO, accession number GSE23580. 

Comparing wild type no Pi versus high Pi conditions identified Pho4 genes under physiological conditions 

(first set of genes). Comparing ΔPho80ΔCbf1 versus ΔPho80ΔPho4ΔCbf1 in high Pi conditions identified 

the influence of Cbf1 on the gene activation role of Pho4 (second set of genes). Then, we downloaded 

the gcPBM signals from (29) for the Pho4 binding sites potentially responsible for the regulation of each 

target gene using the reported criteria: 1) the site was located within 1000bp upstream of the gene TSS, 

and 2) the in vitro Pho4-DNA binding level at the site was higher than the binding level at any of the 

negative control probes in the PBM experiment. We used the PBM intensities to compute the observed 

differential signal for each of the two sets of genes. 

GR MITOMI Methods 

Fabrication of microfluidic molds and devices.  

Flow and control molds were fabricated as described previously (86)and all design files are available on 

the Fordyce Lab website (http://www.fordycelab.com/microfluidic-design-files). We fabricated two-

layer MITOMI devices from these molds using polydimethylsiloxane (PDMS) polymer (RS Hughes, 

RTV615). The control layer was fabricated with a 1:5 ratio of cross-linker to base and the flow layer was 

fabricated with a 1:20 ratio of cross-linker to base. Layers were aligned manually and holes were 

punched with a mounted catheter hole punch. 

Preparation of MITOMI oligonucleotide arrays.  

Pseudorandom 8mer libraries were designed using the ShortCAKE algorithm(85). Single-stranded DNA 

(ssDNA) oligonucleotides were synthesized by Integrated DNA Technologies (IDT). Oligos were 

fluorescently labeled and converted to double-stranded DNA (dsDNA) in a 15 μL Klenow extension 

reaction: 

• dNTPs (final conc: 100 μM each) 

• Cy5-labeled primer (final conc: 10 μM)  

• oligonucleotide (final conc: 10 μM) 

• 2 units, Klenow fragment (exo-) (NEB)  

• NEBuffer 2 (final conc: 1x) 

All reagents were mixed together except for the Klenow enzyme. Samples were denatured at 94oC for 3 

min and cooled to 37oC over 45 minutes. Upon reaching 37oC, Klenow enzyme in 1x NEBuffer 2 was 

added to the sample. Oligonucleotides were then allowed to extend for 1 hour at 37oC and the reaction 

was heat-inactivated at 72oC for 20 min. Primer extension was confirmed by denaturing polyacrylamide 

gel electrophoresis. 

DNA reactions were mixed with PEG (MW=6,000, Fluka) and trehalose (Fluka) to final concentrations of 

0.125% PEG and 12.5 mg/mL trehalose in 3x SSC to promote solubilization of printed DNA. For the 
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pseudorandom 8mer library, DNA was printed at a single concentration; for subsequent libraries, 

reactions were serially diluted to produce 8 different concentrations. This library of serial dilutions was 

then spotted onto 2”x3” epoxysilane-coated glass slides (Thermo Scientific, UCSF2X3-C50- 20) with a 

UCSF/Stanford-style custom microarrayer with 75-μm silicon tips (Parallel Synthesis). After printing, we 

manually aligned MITOMI devices to the DNA array such that each chamber contained one 

oligonucleotide spot. Devices were then bonded to the glass slide by baking on a hot plate at 80oC for 4 

hours to overnight.  

Transcription factor expression for MITOMI.  

Linear templates for in vitro transcription and translation of full-length GR isoform alpha (NCBI 

Reference Sequence NP_000167.1) were generated by a series of 2 PCR reactions as described 

previously (86). The first reaction adds a Kozak sequence, C-terminal 6x His tag and a stop codon to the 

open reading frame of the glucocorticoid receptor gene. The second reaction amplifies this product and 

adds a T7 promoter, a -globin spacer to improve expression, a poly-A tail, and a T7 terminator. PCR 

reactions were cleaned with a generic column cleanup protocol and then TOPO cloned (Invitrogen) into 

the pCR-2.1-TOPO vector prior to IVTT. 

Proteins were expressed in rabbit reticulocyte lysate (TNT T7 Quick Coupled Transcription/- Translation 

System, Promega) according to the manufacturer’s instructions. 75 μL reactions were prepared for each 

device with 1 μg of PCR product. Fluorotect Green BODIPY-FL-labeled charged lysine tRNA (Promega) 

was added to allow protein visualization. Reactions were incubated at 30◦C for 90-120 minutes while 

being shaken at 600 rpm. 

MITOMI device operation and experimental pipeline.  

Devices were run as described previously (86), with flow and control pressures at 5 and 12-20 psi, 

respectively. The slide surface was functionalized with biotinylated BSA (bBSA; ThermoFisher, 2 mg/mL) 

for 20-30 minutes and then washed for 5-10 minutes with 50 mM HEPES (pH 8.0). NeutrAvidin 

(ThermoFisher, 1 mg/mL) was then flowed over the device for 20-30 minutes and the device was 

washed again with HEPES. Button valves were then pressurized and the remaining surface was 

passivated with bBSA, flowed for 30 minutes followed by a 10-minute HEPES wash. Button valves were 

opened and biotinylated anti-pentaHis antibody (Qiagen, 1:4 dilution in HEPES) was flowed for 30 

minutes, followed by a 10 minute HEPES wash. Finally, IVTT-expressed His-tagged protein was flowed for 

40 minutes. 

The neck valves were then opened to allow for solubilization of printed DNA oligonucleotides. 

Simultaneously, sandwich valves were closed to spatially separate adjacent chambers and prevent 

mixing of DNA sequences. The TF-DNA binding reaction was allowed to proceed for 60 minutes before 

the button valves were closed. Sandwich valves were then opened and the device was washed with 

HEPES to flush unbound DNA. Slides were then scanned with an ArrayWorx scanner for 1 s at 488 nm to 

measure BODIPY- FL-labeled protein abundance and 5 s at 633 nm to measure Cy5-labeled DNA 

abundance. 

MITOMI image processing.  

Array scans were analyzed with GenePix v6.0 software to quantify Cy5 and BODIPY-FL intensities under 

the button valve and Cy5 in the DNA chambers. Local background signal was subtracted to account for 
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differences in local illumination, etc. All further analyses were performed with custom software written 

in Python. Chambers with unusually high or low BODIPY-FL signal and chambers with obvious debris or 

protein aggregates were omitted from further analyses. 

Identification of preferred half-sites. 

Pseudorandom 8mer data were analyzed by computing normalized intensity ratios, running fREDUCE to 

identify globally preferred sequences, and then running MatrixREDUCE to refine motifs, as described 

previously (86).  

Determination of equilibrium binding energies.  

For each chamber, we quantified the ratio (R) of button DNA fluorescence (Cy5) to button protein 

fluorescence (BODIPY-FL). We also quantified chamber DNA fluorescence, which is proportional to DNA 

concentration. We then collated concentration-dependent binding data by oligonucleotide sequence 

within each experiment and fit to a Langmuir isotherm: 

𝑅 =
𝑅𝑚𝑎𝑥 ⋅ [𝐷𝑁𝐴]

𝐾𝑑 + [𝐷𝑁𝐴]
 

where 𝑅𝑚𝑎𝑥, the saturation value, is globally fit for all data on a device (as in (22,86)) and where Kd is fit 

for each oligo sequence. Due to a lack of calibration data relating chamber fluorescence to [DNA], we 

report ∆∆G values, as they are relative and eliminate the need for calibration. 

𝛥𝛥𝐺 = −𝑅 ⋅ 𝑇 ⋅ 𝑙𝑛(
𝐾𝑑,1
𝐾𝑑,2

) 

To account for fitting errors associated with a globally fit 𝑅𝑚𝑎𝑥 value, we iteratively selected half of the 

available chambers on a device (e.g. if 1,200 chambers were left after data QC, we selected 600 

chambers without replacement) and performed a fit on this subset. We repeated this process 1,000 

times to build a distribution of estimated 𝐾𝑑 values per oligo per experiment. Reported Kd values and 

errors are the mean and standard deviations of the 𝐾𝑑 distributions per oligo per experiment. 

 

Code and Data Availability 

All the ChIP-nexus data generated and used for this study are available in GEO:GSE207001. All the 

MITOMI measurements of glucocorticoid receptor binding are available at Zenodo: 

https://zenodo.org/record/6762262. The code to reproduce the results of this manuscript is available at: 

https://github.com/kundajelab/affinity_distillation.  
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Figure captions 

Figure 1. Affinity Distillation extracts affinities from PB-exo models in yeast.  

(A) Pipeline overview: BPNet models are trained on PB-exo data for Pho4 and Cbf1, Affinity Distillation 

(AD) extracts affinities, and AD outputs are compared with BETseq-measured ΔΔGs for Pho4 and Cbf1 

binding to all 1,048,576 NNNNNCACGTGNNNNN sequences. (B) Observed and predicted log-

transformed read counts for Pho4 (top) and Cbf1 (bottom) for the training (left) and held-out test 

chromosomes (right). (C) Observed (Obs) and predicted (Pred) PB-exo profile for sample regions located 

on held-out test chromosomes; contribution scores highlight known CACGTG consensus sites within 

bound regions. (D) Measured log-transformed PB-exo read counts vs measured ΔΔGs for 

NNNNNCACGTGNNNNN sequences present in both PB-exo and BET-seq experiments (884 and 294 

sequences for Pho4 and Cbf1). (E) AD-predicted marginalization scores vs measured ΔΔGs for 

NNNNNCACGTGNNNNN sequences present in both PB-exo and BET-seq experiments. (F) AD-predicted 

marginalization scores vs measured ΔΔGs for all 1,048,576 NNNNNCACGTGNNNNN sequences in BET-

seq experiments. (G) Calibrated AD predictions vs measured ΔΔGs for all 1,048,576 

NNNNNCACGTGNNNNN sequences in BET-seq experiments. (H) Post-calibration RMSEs of predictions vs 

observations for Pho4. Gray markers indicate individual motif performances; red markers indicate the 

performance of the top output of each algorithm; blue bars indicate mean values; error bars indicate 

standard deviation.  (I) Same as H for Cbf1. 

  

Figure 2. Affinity Distillation extracts affinities from models of in-vivo TF binding in yeast.  

(A) Pipeline overview: BPNet models are trained on ChIP-nexus data for Pho4 and Cbf1, Affinity 

Distillation (AD) extracts affinities, and AD outputs are compared with BET-seq-measured ΔΔGs. (B) 

Observed and predicted log-transformed read counts for Pho4 (top) and Cbf1 (bottom) for the training 

(left) and held-out test chromosomes (right). (C) Observed and predicted ChIP-nexus profiles for sample 

regions located on held-out test chromosomes; contribution scores highlight known CACGTG consensus 

sites within bound regions.  (D) Measured log-transformed ChIP-nexus read counts vs. measured ΔΔGs 

for sequences present within both ChIP-nexus and BET-seq experiments (482 and 324 sequences for 

Pho4 and Cbf1). (E) AD-predicted marginalization scores vs. measured ΔΔGs for sequences present 

within both ChIP-nexus and BET-seq experiments. (F) AD-predicted marginalization scores vs. measured 

ΔΔGs for all 1,048,576 NNNNNCACGTGNNNNN sequences in BET-seq experiments. (G) Calibrated AD 

predictions vs measured ΔΔGs for all 1,048,576 NNNNNCACGTGNNNNN sequences in BET-seq 

experiments. (H) Post-calibration RMSEs of predictions vs observations for Pho4. Gray markers indicate 

individual motif performances; red markers indicate the performance of the top output of each 

algorithm; blue bars indicate mean values; error bars indicate standard deviation.  (I) Same as H for 

Cbf1. 

  

Figure 3. Affinity Distillation can decipher the differential specificity of paralogous TFs.  

(A) Pipeline overview: BPNet models are trained on ChIP-nexus data for Pho4 and Cbf1, Affinity 

Distillation (AD) extracts affinities, and AD outputs are compared with gcPBM-measured intensities (29). 

(B) Cbf1 and Pho4 position weight matrix (PWM) models from JASPAR (129). (C) Venn diagram of ChIP-

nexus peaks of Cbf1 and Pho4 (see Methods). (D) Pie chart showing Pho4 and Cbf1 binding at all 
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accessible consensus binding sites from ChIP-seq data in no-Pi conditions as previously reported (68). (E) 

Observed log-transformed ChIP-nexus counts vs. observed log-transformed gcPBM intensities for 

genomic loci bound in both ChIP-nexus and gcPBM experiments (104 and 44 sequences for Pho4 and 

Cbf1). (F) Calibrated AD-predicted log intensities vs. observed log-transformed intensities for all 

sequences within gcPBM libraries (20,414 sequences). (G) Post-calibration RMSEs of predictions vs 

observations. Gray markers indicate individual motif performances; red markers indicate the 

performance of the top output of each algorithm; blue bars indicate mean values; error bars indicate 

standard deviation. (H) Measured gcPBM probe intensities for Cbf1 vs. Pho4 (29); red and blue markers 

indicate Cbf1- and Pho4-preferred sequences, quantified by residuals from the regression line. (I) 

Histogram of differential signals for sequences with a 5’ T nucleotide (red, consistent with Cbf1 

preferences) or a 5’ C or G (blue, consistent with Pho4 preferences) preceding a CACGTG motif. (J) 

Predicted vs. observed differential signal for Weeder (left) and AD (right); line indicates linear 

regression. (K) Schematic showing behavior of Pho4-regulated (blue) genes and Cbf1-preferred (red) 

genes as classified in (29,68) under different conditions; ΔCbf1 and ΔCbf1ΔPho4 signify deletion strains. 

(L) Box plots showing observed in vitro Pho4 log signal intensities (top) and Pho4/Cbf1 differential 

intensities (bottom) for genes with low versus high fold induction in response to Pi starvation. (M) Box 

plots showing predicted differential signals from Weeder2 (top) and AD (bottom) for the same genes. 

  

Figure 4. Affinity Distillation predictions recapitulate the dynamic range of observed affinities.  

(A) Pipeline overview: Motif-based methods and Affinity Distillation (AD) are trained on Pho4 in vivo 

ChIP nexus data and used to predict affinities for sequences in in vitro gcPBM experiments; predicted 

affinities are then compared with experimental observations. (B) Histograms showing observed (blue) 

and predicted (orange) intensity distributions for STREME, MoDISco, Weeder and AD. (C) Observed and 

predicted standard deviations and RMSEs for log-transformed intensity distributions. (D) AD-predictions’ 

standard deviations and RMSEs as a function of the number of backgrounds (1, 2, 5, 10, 20, 50, 100 seqs) 

used in in silico marginalization. (E) Schematic of GC-matched augmentation strategy testing prediction 

accuracy for an out-of-distribution yeast DNA library designed to test how short tandem repeats flanking 

known binding sites alter binding affinities (32); comparisons between AD predictions and observed 

ΔΔGs for standard and augmented models are shown at right.  (F) Box plots showing dynamic range of 

observed and AD-predicted ΔΔGs. 

  

Figure 5. Affinity Distillation can extract human GR binding affinities from ChIPseq data.  

(A) Pipeline overview: BPNet is trained on ChIP-seq data for GR [pdb: 1gdc], Affinity Distillation (AD) 

extracts affinities, and AD outputs are compared with MITOMI-measured ΔΔGs. (B) Observed and 

predicted log-transformed read counts for GR on held-out test data. (C) Observed and predicted ChIP-

seq profiles for sample regions located on held-out test chromosomes; contribution scores highlight GR 

and AP-1 consensus sites within bound regions. (D) Overview of MITOMI experiments: first, relative 

fluorescence intensities measured for pseudorandom sequences at a single concentration reveal 

preferred half sites (MITOMI 2.0); subsequent concentration-dependent binding measurements of 

systematically varying DNA libraries quantify Kds (MITOMI). (E) Schematic of pseudorandom 8-mer 

library quantified by MITOMI 2.0 comprised of 740 70 bp dsDNA sequences with 44 overlapping 8-mers 

per sequenceA. (F) Scatterplot showing measured intensity ratios (DNA/transcription factor) for each 
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dsDNA sequence in the pseudorandom 8-mer library . (G) Scatterplot showing normalized binding 

intensity ratios for GR constructs with either C- or N-terminal eGFP tags interacting with the 

pseudorandom 8-mer library and motif derived from these ratios. (H) Overview of MITOMI library 

including dimeric versions of the optimized MITOMI-derived monomer, the ChIP-derived site, and 

systematic variations to half and full sites (188 sequences total). (I) Representative concentration-

dependent binding for GR binding to DNA sequences containing an intact motif (Reference (Ref.); 

GGGACATGATGTCCC), a mutated flanking sequence (1T; GTGACATGATGTCCC), or a mutated motif (4G; 

GGGAGATGATGTCCC) (see Supplement for all other binding curves). (J) Scatterplot showing replicate 

MITOMI ΔΔG measurements. (K) Scatterplots showing de novo marginalization scores (left) and post-

calibration predicted affinities (right) vs. measured ΔΔGs. (L) Post-calibration root mean squared error 

(RMSE) of predictions vs observations. Gray markers indicate individual motif performances; red 

markers indicate the performance of the top output of each algorithm; blue bars indicate mean values; 

error bars indicate standard deviation. (M) Scatterplots showing the predictive performance of Affinity 

Distillation on single substitution variations of consensus sites (MITOMI and ChIP), mutations to half 

sites (MITOMI and ChIP), alternate spacer sequences, and genomic GRE variants. (N) Breakdown of 

RMSE by type of variation in the library, sorted by difference between Affinity Distillation and the best 

performing motif (in this case MoDISco). (O) Schematic of a double mutant cycle (left) and scatterplots 

showing the performance of a simulated additive AD prediction and standard AD prediction (right) for 

MITOMI probes containing multiple mutations from the consensus site. 

  

Figure 6. Affinity Distillation can extract affinities of mammalian genomic binding sites.  

(A) Pipeline overview: BPNet models are trained on ChIP-seq data of different TF structural families 

[pdb: 5EYO, 2JUO, 6G0P] in different cell types, Affinity Distillation (AD) extracts the affinities, and AD 

outputs are compared with gcPBM intensities. (B) Panel 1: Observed and predicted read coverage across 

peaks of held-out chromosomes for MAX model in HeLa-S3 cells; Panel 2: observed and predicted ChIP-

seq profiles for a sample region located on held-out test chromosomes; Panel 3: log-transformed 

ChIPseq read counts and gcPBM intensities for sequences present within both ChIP-seq and gcPBM 

experiments; Panel 4: post-calibration AD-predicted affinities vs. gcPBM intensities  (30); Panel 5: post-

calibration root mean squared errors (RMSE) for predictions vs observations. Gray markers indicate 

individual motif performances; red markers indicate the performance of the top output of each 

algorithm; blue bars indicate mean values; error bars indicate standard deviation. (C–G) Same as B for 

Myc in HeLa-S3, Myc in K562, GABPA in HepG2, GABPA in liver tissue, and E2F1 in MCF7, respectively. 
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Figure 3 
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Figure 5 
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