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Abstract. Droplet microfluidics enables kHz screening of picoliter samples at a fraction of the cost of other high-
throughput approaches. However, generating stable droplets with desired characteristics typically requires labor-
intensive empirical optimization of device designs and flow conditions that limit adoption to specialist labs. Here,
we compile the most comprehensive droplet dataset to date and use it to train machine learning models capable of ac-
curately predicting device geometries and flow conditions required to generate stable aqueous-in-oil and oil-in-aqueous
single and double emulsions from 15 to 250 µm at rates up to 12000 Hz for different fluids commonly used in life
sciences. Novel device geometries predicted by our models for as-yet-unseen fluids yield accurate predictions, estab-
lishing their generalizability. Finally, we generate an easy-to-use design automation tool that yield droplets within 3
µm (< 8%) of the desired diameter, facilitating tailored droplet-based platforms for new applications and accelerating
their utility in life sciences.

1 Introduction

Droplet microfluidics enables massively parallel miniaturized
assays by stably dispersing nanoliter to picoliter samples of
a liquid (the ’dispersed’ fluid) within an immiscible carrier
liquid (the ’continuous’ fluid) [1]. Single emulsion (SE)
water-in-oil or oil-in-water droplet systems have unlocked
new opportunities in single-cell omics [2–4], directed evolu-
tion [5, 6], chemical synthesis [7], and drug and antibody dis-
covery [8, 9]. Double emulsion (DE) droplets commonly con-
sist of an aqueous core wrapped in an oil shell that is dispersed
in an aqueous outer continuous fluid [10] and have been used
for controlled drug delivery [11, 12], production of micropar-
ticles with core–shell structures [13, 14], and in the food and
cosmetics industry [15, 16]. Due to their aqueous outer fluid
and high stability, DEs can also be sorted using commer-
cial fluorescence-activated cell sorting (FACS) machines, en-
abling off-the-shelf screening in droplet microfluidics at kHz
throughput [17].

Despite the benefits of droplet microfluidics, adoption
of this technology in life sciences has been limited primar-
ily to specialized groups or commercially available products
with limited functionality (e.g., 10x Genomics Chromium ma-
chines [18, 19]), largely because droplet stability, size, and
generation rates dictate downstream assay performance but
are difficult to predict. The effective concentration rates of
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species in droplet assays scales inversely with the 3rd power
of droplet diameter, and single-cell encapsulation and the ef-
ficiency of FACS sorting are highly size-dependent [20, 21].
Precise control over generation rate is similarly crucial for de-
velopment of multi-component microfluidic platforms [22].

Droplets are most commonly made using flow-focusing
geometries that yield highly monodisperse droplets over a
wide range of diameters and generation rates and require
lower continuous-to-dispersed flow rate ratios [23–26]. How-
ever, the complex and highly nonlinear dynamics of multi-
phase flows and a large number of effective parameters in
flow-focusing geometries have made it difficult to establish
an analytical solution or a generalizable scaling formula that
can accurately predict droplet diameter and rate across a broad
range of flow conditions and fluid properties [27, 28]. These
limitations are exacerbated in life sciences given that biologi-
cal assays require buffers with varying properties (e.g., inter-
facial tension and viscosity) that can significantly impact the
resultant droplet diameter and generation rate [29, 30]. As
a result, generating droplets with desired properties typically
requires multiple resource-intensive design iterations and em-
pirical tests [31, 32], and this process becomes even more
challenging when integrating other components upstream or
downstream of a droplet generator [22, 33]. Thus, a predictive
understanding of droplet generation would enable conversion
of high-level performance requirements to a microfluidic de-
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Figure 1: Pipeline for collating data and training models to enable performance prediction and design automation of SE and DE droplet
generation. a. Composition of datasets exploring effects of geometry, fluid properties, and flow rates on (i.) SE and (ii.) DE droplet generation
collated to yield a final (iii.) comprehensive dataset with 868 entries. The combined dataset includes 8 dispersed fluids, 6 continuous fluids,
and 46 devices that yield aqueous-in-oil and oil-in-aqueous droplets with diameters from 15 to 250 µm at rates of 5 to 12000 Hz. b. Schematic
of model training to predict: (1) droplet diameter based on device geometry, fluid properties, and flow rates, and (2) droplet generation rates
based on predicted diameters and conservation of mass (see Methods). c. Predictive models were integrated with a custom search algorithm to
convert user-specified desired droplet characteristics to an optional device design and flow rates. This open-source software tool, DAFD 3.0, is
available at: dafdcad.org.

vice design, facilitate multi-component devices, and facilitate
broader adoption of these platforms in life sciences [32].

Machine learning models trained on experimental data
were recently demonstrated to enable accurate prediction of
SE droplet generation performance [34]. However, previously
proposed models only account for variations in flow rates
and device geometries [35] or surfactants [36]. As a result,
previous models offer limited utility in life science applica-
tions. Here, we leverage machine learning and a comprehen-
sive experimental dataset including both SE and DE droplets
comprised of many different fluids to train models that accu-
rately predict droplet diameter and generation rate across a
diverse range of fluid properties, geometries, flow rates, and
device materials. Additionally, we demonstrate that our mod-
els generalize to new geometries and fluids by experimentally
validating ’blind’ predictions using novel device geometries
and fluid compositions. Finally, we integrate these predic-
tive models with an automated search algorithm to create a
design automation tool for SE and DE droplets. This open-
source tool, called DAFD 3.0 (Design Automation of Fluid
Dynamics), can return the necessary design and flow rates to
achieve the user-specified diameter and rate for different flu-
ids, while also predicting other characteristics such as perfor-
mance range and stability (Fig. 1).

2 Results

2.1 Comprehensive droplet generation dataset

To generate a comprehensive dataset detailing impacts of de-
vice designs, flow rates, and fluid properties (e.g., viscosity
and interfacial tension) on droplet diameters and generation
rates, we curated and combined two previously generated SE
and DE experimental datasets [30, 35]. This comprehensive
dataset includes 46 different polydimethylsiloxane (PDMS)
and polycarbonate device designs (43 SE and 3 DE genera-
tors with 49 flow-focusing geometries combined), 8 different
dispersed fluids, and 6 different continuous fluids for gener-
ating aqueous-in-oil and oil-in-aqueous droplets of 15 to 250
µm in diameter at rates of 5 to 12000 Hz (Fig. 2).

2.1.1 Single emulsion droplets

We previously generated aqueous-in-oil (DI water and mineral
oil) SEs using 43 devices and multiple capillary numbers and
flow rate ratios (see Methods for definitions) [35]. This dataset
varies the orifice width from 75 to 175 µm and systematically
explores the remaining geometric parameters according to the
orifice width (Fig. 2a). The devices were then tested at a
range of capillary numbers and flow rate ratios and yielded
droplets of 25 to 250 µm at 5 to 500 Hz in the dripping regime
(474 datapoints total). To improve generalizability, we first
converted the orifice dimensions of each device to hydraulic
diameter (Dh):
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Table 1: 11 different fluid combinations in the dataset make it possible to investigate effects of fluid properties on droplet generation.
These fluids are commonly used across different life science applications. The viscosity of the dispersed fluids varied from 0.86 to 3.4 mPa.s
and the viscosity of the continuous fluids varied from 1.61 to 57.2 mPa.s. The interfacial tension between the dispersed and continuous fluids
ranged from 0.318 to 12.84 mN/m. Newly generated data and previously published data on droplet generation using 4 new and unseen fluid
combinations were used to assess the generalizability of models to novel fluids.

Dispersed fluid Continuous fluid Interaction

Fluid Viscosity Fluid Viscosity Interfacial tension
(mPa.s) (mPa.s) (mN/m)

Fluids included in the comprehensive dataset

1. M9 bacterial media 0.861 HFE 7500 oil + 2.2% ionic Krytox 1.61 12.84
2. M9 bacterial media + 25 mM glucose 0.967 HFE 7500 oil + 2.2% ionic Krytox 1.61 11.60
3. PBS 0.931 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.543
4. PBS + 1% Tween-20 0.988 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.319
5. PBS + 0.9% NP40 1.003 HFE 7500 oil + 2.2% ionic Krytox 1.61 1.41
6. PBS + 10% PEG 6000 mw 3.431 HFE 7500 oil + 2.2% ionic Krytox 1.61 0.461
7. DI water 1.001 NF350 mineral oil + 5% Span-80 57.2 5.0
8. HFE 7500 oil + 2.2% ionic Krytox 1.61 PBS+1% Tween-20 + 2% Pluronic F68 1.303 0.318
9. HFE 7500 oil + 2.2% ionic Krytox 1.61 M9 salts + 2% Pluronic F68 1.412 0.522
10. HFE 7500 oil + 2.2% ionic Krytox 1.61 M9 salts + 25 mM glucose + 2% Pluronic F68 1.563 0.458
11. HFE 7500 oil + 2.2% ionic Krytox 1.61 PBS + 10% PEG 6000mw + 2% Pluronic F68 6.395 0.455

Unseen fluids for assessing the generalizability of models

12. DMEM complete cell media + 16% Optiprep 1.25 2% dSurf HFE 7500 oil 1.61 9.74
13. RPMI 1640 complete cell media + 20% Optiprep + 0.1% Pluronic F127 1.36 2% dSurf HFE 7500 oil 1.61 6.16
14. 2% dSurf HFE 7500 oil 1.61 RPMI 1640 complete cell media + 5% Pluronic F127 2.82 4.61
15. Surfactant-free HFE 7500 oil 1.31 trimethylolpropane trimethacrylate (TMPTMA) 4.2 3.10

Dh =
2 ·Wor · H
Wor + H

, (1)

where Wor is orifice width and H is channel height. We then
computed normalized droplet diameter D produced by each
device:

D =
D
Dh
, (2)

where D is the observed droplet diameter. The diverse
range of flow rates (Fig. 2a.i) and device design parameters
(Fig. 2a.ii) resulted in droplets with normalized diameters
ranging from 0.35 to 1.5 (Fig. 2a.iii).

2.1.2 Double emulsion droplets

We also previously generated aqueous-oil-aqueous DEs us-
ing 3 PDMS devices with different geometries using multiple
flow rates (197 datapoints total). These experiments used sev-
eral biologically relevant fluids with applications in cell cul-
ture, cell lysis, and molecular biology (e.g., PCR, NGS, and
ATAC-Seq) including 6 different inner, 1 middle, and 4 outer
fluids (Table 1) [30]. The 3 devices contained orifice widths of
15, 22.5, and 30 µm at flow-focuser 1 (FF1) and 30, 45, and
60 µm at flow-focuser 2 (FF2), respectively, with a normal-
ized depth (i.e., aspect ratio) of 1. The orifice at FF2 is twice
as wide and deep as orifice at FF1. The resultant droplet di-
ameters ranged from 15.5 µm to 54.2 µm and generation rates
varied from 1800 to 11800 Hz. To effectively model DE gen-
eration, we considered it as two independent SE generation
events at FF1 and FF2, with FF1 generating aqueous-in-oil
SEs and FF2 generating oil-in-aqueous SEs (we validate this
assumption in Performance prediction section). We also nor-
malized DE inner and outer diameters using the hydraulic di-
ameters at FF1 and FF2, respectively (i.e., the orifice at which
droplets are generated). Normalized inner diameters varied
from 0.92 to 1.6 (15.5 to 42.1 µm) and normalized outer di-
ameters ranged from 0.84 to 1.06 (27.4 to 54.2 µm) as shown
in Fig. 2b.

We then curated and combined the SE and DE datasets
by using standardized definitions of capillary number and ge-
ometric parameters to create a comprehensive dataset of mi-
crofluidic droplet generation that covers a diverse design space
of capillary numbers, flow rate ratios (Supplementary Fig.
1), geometries, fluid properties, flow conditions, and output
performance (Table 2). As orifice length minimally impacts
droplet generation in the dripping regime, we did not consider
it as a design parameter [37]. This enabled us to model flow-
focusing geometries that do not contain an orifice constriction,
where orifice length cannot be clearly defined. This dataset
is the largest experimental dataset available for microfluidic
droplet generation in the dripping regime and is the first to
include aqueous-in-oil and oil-in-aqueous droplets, different
biologically relevant fluids and device materials (Supplemen-
tary Table 1).

2.2 Droplet diameter and generation rate prediction

We trained scaling law, neural network, and boosted decision
tree models to predict SE and DE droplet diameters and gen-
eration rates. While scaling laws (i.e., empirically fitted scal-
ing formulas) are simple and have been traditionally used for
this task, they are often inaccurate or fail to generalize to un-
seen fluids and size scales [35, 36]. We therefore also trained
machine learning models and compared their accuracy and
generalizability to scaling laws. To improve generalizability,
we made all design parameters dimensionless when possible.
This involved using capillary number, viscosity ratio, and flow
rate ratio to account for fluid properties (i.e., viscosity and in-
terfacial tension) and flow rates. We also normalized all ge-
ometric parameters (channel depth, dispersed and continuous
inlet widths, and outlet channel width) by the orifice width,
apart from orifice width itself (Fig. 3a). In all models, we first
predicted normalized droplet diameter based on input param-
eters and then used the hydraulic diameter of the orifice to
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Figure 2: The comprehensive dataset includes SE and DE droplets produced using a wide variety of device geometries, fluid properties,
flow rates. a. The SE dataset includes 43 polycarbonate devices that varied orifice width, channel depth, outlet width, and continuous and
dispersed fluid inlet widths; each device was used over multiple flow rate ratios and capillary numbers to generate SEs with diameters of 25
to 250 µm at rates of 5 to 500 Hz. b. The DE dataset includes 3 PDMS devices (each with two flow-focusers) and 6 inner, 1 middle, and 4
outer fluids. Devices were tested at different flow rates of inner, oil, and outer fluids (different capillary numbers and flow rate ratios for each
junction). The orifice widths of the PDMS devices were 15, 22.5, and 30 µm at the first junction, with an aspect ratio of 1, while the orifice size
at the 2nd junction was twice the size of the 1st junction. Several biologically relevant fluids with different viscosities and interfacial tensions
were used to generate droplets with diameters of 15 (inner) to 54.2 (outer) µm at rates of 1800 to 11800 Hz.

calculate an actual droplet diameter:

Dp = Dp · Dh , (3)

where Dp is predicted droplet diameter, Dp is predicted nor-
malized diameter, and Dh is the hydraulic diameter of the ori-
fice.

To evaluate the accuracy of models and prevent over-
fitting, we randomly split the comprehensive dataset into a
training set (80%) and a testing set (20%) over 15 different
training sessions and calculated the average performance of
each model against the test set. For each model, we first pre-
dicted droplet diameters and then used these values to calcu-
late predicted droplet generation rates based on dispersed fluid
flow rate and conservation of mass (assuming stable droplet
generation with a uniform diameter):

Qd = F · Vd (4)

F =
6 · Qd

π · D3 . (5)

Here, Qd is the dispersed fluid flow rate, F is the generation
rate, Vd is the droplet volume, and D is the droplet diameter.

To predict DE outer diameters, we set the flow rate of the dis-
persed fluid to the total flow rate of inner and middle fluids (as
is required to satisfy conservation of mass).

2.2.1 Scaling laws

Fitting several previously published scaling laws [38–43] to
the comprehensive dataset yielded predictions with a mean ab-
solute percentage error (MAPE) range of 17.7–47.6% for di-
ameter predictions and 58.7–3023% for rate predictions (Sup-
plementary Note 1, Supplementary Table 2 and Supplemen-
tary Figs. 2–12). Among these models, the Liu et al. scaling
law showed the best accuracy and used flow rate ratio, vis-
cosity ratio, and capillary number as inputs (Fig. 3b) [38].
These inputs may not always affect diameter independently
and the impact of flow rate ratio can vary from low to high
capillary numbers [37]. Therefore, we also proposed a new
scaling law that accounts for some level of parameter depen-
dence. This new scaling law was able to predict diameter and
generation rate with a MAPE of 13.6% and 46.9%, respec-
tively (Fig. 3c). Including additional parameters as inputs ei-
ther prevented finding a solution or reduced accuracy.
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Table 2: The comprehensive dataset includes 868 datapoints on single and double emulsion generation with different fluids. This dataset
includes both aqueous-in-oil and oil-in-aqueous droplets with a broad range of output performance. This is achieved by varying effective
parameters in flow-focusing droplet generation including device geometry, fluid properties, and flow rates.

Parameter Unit Lower bound Upper bound Unique values

Output performance
Droplet diameter µm 15.5 245.1 825
Generation rate Hz 5 11,774 838
Droplet diameter normalized by hydraulic diameter N.A. 0.35 1.60 833

Fluid properties
Dispersed fluid viscosity mPa.s 0.861 3.431 8
Continuous fluid viscosity mPa.s 1.303 57.2 6
Interfacial tension mN.m−1 0.318 12.84 11
Viscosity ratio (continuous/dispersed) N.A. 0.47 57.2 11

Geometric parameters
Orifice width µm 15 175 10
Normalized channel depth N.A. 1 3 13
Normalized continuous fluid inlet width N.A. 1 4 15
Normalized dispersed fluid inlet width N.A. 1 4 13
Normalized outlet channel width N.A. 1 6 15

Flow parameters
Flow rate ratio (continuous/dispersed) N.A. 0.69 22 187
Capillary number N.A. 0.014 9.399 206

2.2.2 Machine learning models

Next, we trained a neural network that takes capillary number,
flow rate ratio, and five geometric parameters (orifice width,
normalized channel depth, normalized outlet width, normal-
ized dispersed fluid inlet width, and normalized continuous
fluid inlet width) as inputs and predicts normalized droplet di-
ameter. We chose a wide and shallow network structure, with
2 hidden layers of 512 and 16 nodes, respectively, which is
more suitable for small datasets compared to deep and nar-
row structures (i.e., more hidden layers with fewer nodes)
[44]. The trained neural network significantly outperformed
the scaling laws over 15 randomized sessions, with MAPE of
7.4% for diameter and 22.6% for generation rate (Fig. 3d, see
Supplementary Fig. 13 for 14 additional training sessions).
We did not include viscosity ratio as an input for the neu-
ral network as it resulted in a slightly lower accuracy when
predicting previously published data not included in the origi-
nal training and testing datasets (discussed in Generalizability
to unseen geometries and fluids section), despite achieving a
slightly higher accuracy for the comprehensive dataset (Sup-
plementary Note 2 and Supplementary Table 3).

We then trained boosted decision trees to predict normal-
ized droplet diameters, using viscosity ratio, capillary num-
ber, flow rate ratio, and the five geometric parameters as in-
puts. Across 15 randomized training sessions, boosted deci-
sion trees showed an MAPE of 5.4% for predicting diame-
ter and 16.6% for generation rate (Fig. 3e, see Supplemen-
tary Fig. 14 for 14 additional training sessions). Overall,
boosted decision trees (closely followed by the neural net-
work) enabled the most accurate performance prediction in
flow-focusing aqueous-in-oil and oil-in-aqueous droplet gen-
eration across different fluids with diameters of 15 to 250 µm
at rates of 5 to 12000 Hz; models showed higher accuracy for
predicting the inner diameter of DEs compared to their outer
diameter (Supplementary Fig. 15). Other statistical metrics
including coefficient of determination (R2), mean absolute er-
ror (MAE), and root mean square error (RMSE) also demon-

strate the significantly higher accuracy of machine learning
models compared to scaling laws (Table 3).

Machine learning models show even greater improve-
ments for predicting generation rate. Literature scaling laws
resulted in a negative R2 (i.e., predictions were worse than
just predicting the mean outcome for all outcomes) and a
MAE of 1367 Hz (MAPE of 58.7%) for predicting genera-
tion rate, compared to R2=0.98 and a MAE of 220 Hz (MAPE
of 16.6%) for boosted decision trees and R2=0.97 and MAE
of 260 Hz (MAPE of 22.6%) for neural network.

For both machine learning models, the MAPE for genera-
tion rate was approximately 3 times the MAPE for diameter.
This is mathematically expected according to conservation of
mass. As the generation rate inversely scales with the 3rd

power of diameter, assuming a relatively small error in diam-
eter prediction and using a Taylor series expansion yields a 3-
fold larger MAPE for rate prediction (Supplementary Note 3)
[35]. Scaling laws deviate from this rule because their error in
predicting diameter is not sufficiently small to neglect higher
order approximations in Taylor series expansion.

Boosted decision trees are interpretable and can reveal rel-
ative significance of design parameters for a dataset (Methods:
Parameter significance study). To determine key parameters in
different scenarios of droplet generation, we trained and eval-
uated decision trees on different subsets of the comprehensive
dataset. Flow rate ratio, orifice width, capillary number, and
viscosity ratio were most important for predicting normalized
droplet diameter in the comprehensive dataset (Fig. 3f.i). For
aqueous-in-oil SE droplets, flow rate ratio remained the most
important, followed by capillary number (Fig. 3f.ii). For DE
droplets, normalized inner diameters were mostly determined
by viscosity ratio and flow ratio (Fig. 3f.iii) while normalized
outer diameters were affected by all parameters, with capillary
number being the most significant (Fig. 3f.iv).

2.3 Prediction of stable and unstable DE generation

Producing stable single-core DE droplets requires that gen-
eration rates at FF1 and FF2 be matched. If the rate at
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Figure 3: Boosted decision trees and neural networks accurately predict SE and DE droplet diameters and generation rates. a.
To develop generalizable models, we converted fluid and flow properties and geometric parameters to dimensionless inputs and split the
comprehensive dataset into 80% train and 20% test sets across 15 randomized sessions. In each case, we trained and compared performance
of b. a previously published scaling law [38], c. a newly-proposed scaling law, d. a neural network and e. boosted decision trees. MAPEs for
predicting rate were approximately 3 times the MAPEs for diameter, as expected from conservation of mass. Red dashed line indicates the 1:1
line, each grey marker indicates model-predicted values for datapoints included either within the training set (light grey) or the test set (dark
grey) of a single representative model. f. Relative importance of different parameters in predicting droplet diameters with boosted decision
trees; bars represent the average significant and error bars represent standard deviation across 15 random training sessions.

FF1 exceeds that of FF2, some DEs end up with multiple
cores; conversely, if the rate at FF1 is lower than that at FF2,
some droplets do not contain a core (Fig. 4a). As genera-
tion rates depend critically on device geometries and fluid
properties, identifying conditions required to generate stable
single-core DEs for new reagent combinations is typically a
time-consuming process involving several design iterations
and flow rate optimizations for inner, middle, and outer fluids.
Here, we tested if machine learning models could streamline
this process by predicting device geometries and flow rates
required to generate stable single core DEs. The fact that
our models can consider DE generation as a combination of
2 independent droplet generation events (i.e. generation of a
aqueous-in-oil droplet and an oil-in-aqueous droplet) suggests
that these models may also be able to predict when droplet
generation is stable (i.e. yields single core DEs) or unstable
(i.e. yields multicore or coreless droplets) just by comparing
the generation rates at FF1 and FF2.

We assessed our machine learning models by (1) predict-
ing the stability of 197 datapoints that resulted in stable DE

generation and (2) predicting the instability of 17 newly gen-
erated datapoints on unstable DE generation. For the 197 dat-
apoints in the stable DE dataset, we observed a maximum gen-
eration rate difference (GRD) of 15% between the experimen-
tally calculated generation rates FF1 and FF2. As the fraction
of non-single core DEs depends on the percentage mismatch
in generation rates, it is somewhat surprising that mismatches
of this magnitude still lead to stable DE generation. This dis-
crepancy likely stems from small inaccuracies in experimen-
tally measured diameters, which scale by a power of 3 when
calculating generation rates and the fact that small mismatches
still yield droplet populations that are mostly single-core DEs.
We therefore classified any set of conditions with a predicted
absolute GRD of <15% as yielding stable droplets:

GRD (%) = 100 ·
F1 − F2

F1
. (6)

Here, F1 is generation rate at FF1, calculated from inner di-
ameter, and F2 is rate at FF2, calculated from outer diameter
using conservation of mass.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.31.543128doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543128
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Performance prediction accuracy for each model. Metrics are reported for a 20% test-set, using the average plus-minus (±) the
standard deviation for 15 different randomized training and testing sessions. ∗ Mean absolute percentage error, ∗∗ Coefficient of determination,
∗∗∗ Mean absolute error, ∗∗∗∗ Root mean square error.

Parameter MAPE ∗ R2∗∗ MAE∗∗∗ RMSE∗∗∗∗

Droplet diameter prediction
Boosted decision trees 5.38 ± 0.34 % 0.96 ± 0.00 4.62 ± 0.41 µm 8.29 ± 0.73 µm
Neural network 7.45 ± 0.42 % 0.95 ± 0.01 5.98 ± 0.38 µm 9.88 ± 0.49 µm
Proposed scaling law 13.65 ± 0.68 % 0.88 ± 0.02 9.89 ± 0.62 µm 14.96 ± 1.14 µm
Literature scaling law 17.67 ± 0.45 % 0.89 ± 0.01 10.85 ± 0.38 µm 14.51 ± 0.80 µm

Generation rate prediction
Boosted decision trees 16.58 ± 1.05 % 0.98 ± 0.00 219.7 ± 12.7 Hz 452.5 ± 19.5 Hz
Neural network 22.59 ± 1.4 % 0.97 ± 0.00 260.1 ± 14.3 Hz 499.9 ± 22.9 Hz
Proposed scaling law 46.86 ± 4.60 % 0.83 ± 0.03 676.9 ± 80.7 Hz 1182.6 ± 90.1 Hz
Literature scaling law 58.68 ± 3.09 % -0.02 ± 0.24 1367.5 ± 590.9 Hz 2774.7 ± 582.1 Hz

Using this criteria, the neural network correctly predicted
conditions that generate stable, single core DEs for 94.4% of
datapoints over 15 randomized training sessions (Fig. 4b.i).
Despite predicting diameters and generation rates more ac-
curately than neural networks, boosted decision trees cor-
rectly classified conditions as producing stable droplets in
only 75.6% of cases (Fig. 4b.ii); in the remaining cases, condi-
tions that generated stable droplets were predicted to be unsta-
ble. This performance difference likely stemmed from differ-
ing degrees of correlation between model-predicted rate errors
at FF1 and FF2 (R2 = 0.05 and R2 = 0.52 for boosted decision
trees and neural networks, respectively, Fig. 4c.i–ii). To take
advantage of the high accuracy of boosted decision trees in
predicting generation rates and the high accuracy of the neu-
ral network in predicting DE stability, we developed a consen-
sus model that averages predictions of each model. This con-
sensus model correctly predicted stability for 89.8% of data-
points while also minimizing generation rate errors (Fig. 4b.iii
& c.iii).

Next, we tested if these models could predict unstable DE
generation despite only being trained on conditions that lead
to stable DE generation within the comprehensive dataset. We
generated 17 new datapoints using 5 different fluids to make
DE droplets with either multiple or no cores (Fig. 4d). We then
tested if these models correctly predicted unstable generation
(i.e. if they predicted a GRD >15%). While machine learn-
ing models fairly accurately predicted the mode of instability
(i.e., GRD >0 : multiple cores or GRD <0 : no cores) for un-
stable droplets (neural networks, boosted decision trees, and
the consensus model classified modes of instability correctly
in 83.5%, 74.1%, and 85.8% of cases, respectively, Fig. 4e),
they were less able to predict whether or not DE generation
was stable (neural networks, boosted decision trees, and the
consensus model predicted absolute GRD > 15% for 50.6%,
23.5%, and 29.4% of unstable generation cases, respectively)
(Fig. 4e). This prediction performance could likely be im-
proved in the future by training on a dataset including a much
larger number of unstable generation cases.

2.4 Machine learning models can generalize to
previously unseen geometries and fluids

Training models that accurately generalize to unseen design
parameters and new data sources is a common challenge in
developing machine learning models [45–47]. Here, we di-

rectly tested the ability of each model (the literature scaling
model, the neural network, the boosted decision tree, and the
consensus model) to generalize by using each model to pre-
dict droplet diameter, generation rate, and stability for as-yet-
unseen fluids and device geometries by (1) comparing model
predictions of droplet diameter and generation rate for previ-
ously published data not included in the training data and (2)
using each model to predict diameter and generation rate and
then experimentally fabricating devices with specified new ge-
ometries, using them to generate droplets using those fluids,
and directly comparing model predictions with new experi-
mental results. This evaluation of the accuracy of ’blind’
model predictions provides a stringent test of the degree to
which each model can generalize.

First, we used two previously published datasets with un-
seen geometries and fluids to evaluate the generalizability of
our models to datasets generated by others (Fig. 5a.i). These
datasets include SE and DE aqueous-in-oil [24] and oil-in-
polymer droplets [48]. In the aqueous-in-oil SE data, droplets
of DMEM mammalian cell media with added 16% optiprep,
10% FBS, and 1% penicillin-streptomycin were generated
with HFE 7500 oil containing 1.5% fluorinated surfactant for
single-cell analysis [24]. In the oil-in-polymer data [48], core-
shell structures were formed using HFE 7500, trimethylol-
propane trimethacrylate (TMPTMA), and 50% glycerol in DI
water as inner, middle, and outer fluids, respectively. As fluid
properties and interfacial tension were only provided for FF1
(droplets of HFE 7500 in TMPTMA) in this dataset, we pre-
dicted only inner diameter of DEs. Predicted droplet diam-
eters for both datasets (18 datapoints total) were least accu-
rate for the literature scaling law (MAPE of 21.7% and 45.0%
for diameter and rate, respectively). The machine learning
models were consistently more accurate, with boosted deci-
sion trees slightly outperforming others in terms of MAPE
(10.6% for diameter and 28.6% for rate) and the consensus
model slightly outperforming others in terms of coefficient
of determination (R2 of 0.97 and 0.98 for diameter and rate,
respectively) averaged over 15 randomized training sessions
(Fig. 5a.ii–iv).

Next, we fabricated a new DE generation device based on
a previously published design [20] with as-yet-unseen chan-
nel geometries (2 aqueous inlets instead of a single inlet and a
normalized channel depth of 1.33 instead of 1) and used it to
generate DEs with fluids suitable for mammalian cell encap-
sulation (complete RPMI 1640 cell media with 20% optiprep
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Figure 4: Models’ performance in predicting stable and unstable DE droplet generation regimes. a. DE generation was modeled as two
events of droplet generation at FF1 (aqueous-in-oil) and FF2 (oil-in-aqueous); the threshold for unstable DE generation was set to a generation
rate difference (GRD) of 15%. b. Comparison of predicted and calculated GRD at FF1 and FF2 for the neural network, boosted decision
trees, and consensus model over the 197 stable datapoints. Green boxes indicate regions with predicted GRD < 15% and experimentally
stable droplets; annotated accuracies represent average values over 15 randomized training sessions. c. Comparisons between errors in model-
predicted generation rates at FF1 and FF2. Markers show comparisons for a single representative model, dashed line indicates 1:1 line, and
annotation denotes the average coefficient of determination over 15 randomized training sessions.d. Images for unstable DE droplets generated
using 17 new conditions (5 different fluid combinations and varied inner and middle flow rates). e. Comparisons between observed instability
mode vs. predicted GRD (top) and bar charts quantifying accuracy in predicting the mode of instability (bottom, left) and whether or not
droplet generation was unstable (bottom, right). Correct predictions appear in green shaded areas, incorrect predictions appear in red shaded
areas, and GRDs predicted to lead to stable droplets are indicated by lighter shading. For bar plots, bars indicate average accuracy values across
15 randomized training sessions and error bars indicate standard deviation.

and 0.1% pluronic F-127 for inner fluid, and complete RPMI
1640 with 5% pluronic F-127 for the outer fluid). After mea-
suring the interfacial surface tension for each fluid interface
(required to calculate capillary number), we used each of the
pre-trained models to predict droplet diameters and generation
rates for 10 different flow rate combinations. Finally, we gen-
erated DEs using these same flow rates and directly compared
model predictions to experimental data. The resultant droplets
spanned inner diameters of 29.6 to 34.9 µm and outer diame-
ters of 36.7 to 46.8 µm (Fig. 5b.i). The machine learning mod-
els all outperformed the literature scaling law and accurately
predicted droplet diameters and generation rates (MAPEs of

7.0 to 8.2% and 20.9 to 36.9% for diameter and generation
rate, respectively), with the consensus model showing the best
overall performance (Fig. 5b.ii–iv). This ability to accurately
predict newly generated data with unseen fluids and geome-
tries demonstrates an ability to generalize, likely due to the
diversity of the comprehensive dataset in terms of geometry,
fluid properties, and flow rates and the use of dimensionless
parameters and L2 regularization during model training [49].
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Figure 5: Generalization of machine learning models to fluids and geometries not included within the comprehensive dataset. a.i
Performance of trained models in predicting previously published SE droplet geometries and generation rates not included within the training
set. a.i References for experimental data and schematics showing device geometries and fluid compositions used to generate SE droplets. a.ii-iii
Comparison between observed SE droplet diameters (a.ii) and generation rates (a.iii) and those predicted by 4 different trained models. Dashed
lines indicate 1:1 identity line. a.iv Quality metrics assessing model performance. Bars indicate average performance across 15 randomized
training sessions; error bars denote standard deviation. b Performance of trained model in predicting DE geometries and generation rates for
newly generated data. b.i. Schematics showing device geometry, fluid compositions, flow rate ratios, and capillary numbers used to generate
DEs (left) and representative images of generated DEs (right). Scale bars are 50 µm. b.ii-iii Comparison between observed DE droplet diameters
(b.ii) and generation rates (b.iii) and those predicted by 4 different trained models. Dashed lines indicate 1:1 identity line. b.iv Quality metrics
assessing model performance. Bars indicate average performance across 15 randomized training sessions; error bars denote standard deviation.

2.5 Design automation of SE and DE droplets

The ability to automate design of devices for producing
droplets with desired diameters and generation rates can dra-
matically reduce time spent fabricating, testing, and opti-
mizing microfluidic devices. We previously developed an
online open-source tool (DAFD, for Design Automation of
Fluid Dynamics) that converted user-specified droplet diam-
eters and rates into a microfluidic design and flow rates that
delivered the desired performance [35]. However, the pre-
vious version of this tool was limited to only aqueous-in-oil
SEs, a single simple fluid combination (DI water and min-
eral oil), large polycarbonate devices (orifice width > 75 µm),
and a maximum generation rate of 500 Hz. Here, we present
a new open-source-tool, DAFD 3.0, that leverages the con-
sensus model (i.e., average of neural network and boosted
decision trees) and new search algorithms to design PDMS
and polycarbonate devices capable of producing aqueous-in-
oil and oil-in-aqueous SE and DE droplets using a wide vari-

ety of different fluids. This tool supports device orifice widths
of 15 to 175 µm and droplets of 15 to 250 µm in diameter
produced at rates of 5 to 12000 Hz.

For SE design automation, DAFD 3.0 takes the desired
diameter and rate alongside the viscosities and interfacial ten-
sion of inner and outer fluids as inputs and provides the nec-
essary device geometry and flow rates (while allowing for op-
tional design constraints; Supplementary Fig. 16 and Meth-
ods). To test DAFD 3.0 accuracy and reliability for SEs, we
specified that we wanted to produce SEs with diameters of
25, 30, and 35 µm using a previously unseen fluid combina-
tion (RPMI 1640 complete cell media with added 20% op-
tiprep and 0.1% pluronic F127 as dispersed fluid and dSurf
HFE 7500 as the continuous fluid) and constrained the pos-
sible geometry to require the same pre-fabricated DE genera-
tor device used to assess model generalizability in (Fig. 5.b).
We then generated SEs with the DE generator by blocking
the outer fluid inlet and flowing dispersed and continuous flu-
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Figure 6: Trained machine learning models and custom search algorithms enable design automation of SE and DE droplet generation.
a Design automation of SE droplet generation. a.i DAFD 3.0 takes user-specified diameter, rate, fluid properties, and optional constraints
as inputs and returns the necessary geometry and flow rates required to generate the desired droplets. a.ii. DAFD-predicted and measured
droplet diameters after specifying desired SE diameters of 25, 30, and 35 µm for an unseen fluid combination (left) and representative images
of generated droplets (right). Measured droplets differed from specified droplets by a MAE of 2.3 µm (MAPE of 7.9%). b Design automation
of DE droplet generation. b.i. DAFD 3.0 also converts user-specified DE inner and outer diameters to the necessary geometries and flow rates
required to generate them. b.ii. DAFD-predicted generation rates as a function of middle, inner, and outer flow rates; predict generation rate
differences (GRDs) between FF1 and FF2 to identify likely stable (GRD <5%) and unstable (GRD >5%) regimes. b.iii Comparison between
observed and DAFD-specified DE inner (blue) and outer (orange) diameters for an unseen fluid combination and 9 different flow rates (left);
images show representative DE droplets generated under each condition (right). For stable droplets, observed inner and outer diameters differed
from those specified by a MAE of 2.7 µm (MAPE of 6.3%). Scale bars are 50 µm.

ids through FF1 and compared resulting droplet diameters to
our original specifications. Introducing fluids using DAFD-
suggested flow rates (Supplementary Table 4) yielded SEs of
27.5, 31.6, and 37.9 µm in diameter, very close to model pre-
dictions with an overall MAE of 2.36 µm and MAPE of 7.94%
(Fig. 6.a).

For DE design automation, our tool takes desired inner
and outer diameters and fluid properties (viscosities and in-
terfacial tensions) of 3 fluids as inputs and predicts DE inner
and outer diameters generated using either six different de-
fault designs or a user-specified geometry (if a suitable solu-
tion can be found). For DE generation, DAFD 3.0 requires
the total flow rate at FF1 (i.e., the inner plus middle fluid flow
rates) to be equal to the flow rate of dispersed fluid at FF2 to
uphold conservation of mass. Next, generation rates at FF1
and FF2 are calculated by the tool, and only the datapoints
that have a GRD of less than 5% are considered to increase
the chances of stable DE generation and establish a solution
space (Fig. 6b.ii). Finally, DAFD 3.0 ranks potential solu-
tions based on their average deviation from the desired inner

and outer diameters and returns a single best set of flow rates
(Supplementary Fig. 17 and Methods).

To test DAFD 3.0 accuracy and reliability for DEs, we
specified: (1) that we wanted to generate DEs with a range of
inner (25–40 µm) and outer diameters (45–55 µm) using the
same fluids as used above for SEs within an outer fluid of 5%
pluronic F127 and (2) that we wanted to constrain the design
to the same DE device geometry used above. We then used the
9 suggested flow rate combinations to generate DEs and quan-
tified the resultant droplet diameters (Supplementary Table 5).
Consistent with prior observations that machine learning mod-
els can struggle to accurately predict whether flow combina-
tions yield stable single-core droplets, 3/9 conditions at the ex-
tremes of inner droplet diameter did not yield stable droplets.
The flow rates designed to create DEs with the largest inner di-
ameter (40 µm ID and either 50 or 55 µm OD) led to no droplet
formation at FF1, while the flow rates designed to create DEs
with a 25 µm ID and a 55 µm OD led to many DEs lacking a
core. Among stable datapoints, DAFD 3.0 was highly accu-
rate, generating DEs that were different from target diameters
by a MAE of 2.70 µm (MAPE of 6.3%). The accuracy for in-
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ner diameter (MAE of 1.5 µm & MAPE of 4.8%) was higher
than outer diameter (MAE of 3.9 µm & MAPE of 7.9%), po-
tentially due to the bias of training data toward aqueous-in-oil
droplets and the non-zero yet minimal dependence of outer
diameter on the inner diameter (Fig. 6b.iii).

3 Discussion

Here, we establish that machine learning models can enable
accurate and generalizable prediction of droplet diameters and
generation rates based on device geometries, fluid properties,
and flow rates for aqueous-in-oil and oil-in-aqueous SE and
DE droplets. These models cover droplet diameters of 15 to
250 µm at rates of up to 12000 Hz and take a broad range
of input design parameters, including 3 orders of magnitude
variation in capillary number, 2 orders of magnitude variation
in viscosity ratio, and more than 1 order of magnitude vari-
ation in flow rate ratio and microfluidic channel size. This
represents a notable improvement over previous models for
single-fluid aqueous-in-oil SEs that could either only account
for variations in geometry for generation rates of up to 500
Hz [35] or surfactants for a single geometry [36]. In all cases,
the trained neural network and boosted decision trees detailed
here outperform previously published scaling laws and ma-
chine learning models in terms of accuracy and parameter
range [35, 36, 38–43]. Boosted decision trees had the high-
est accuracy, with a MAE of 4.6 µm (MAPE of 5.4%) and
220 Hz (16.6%) in predicting diameter and generation rate,
respectively. Nonetheless, a consensus model based on both
boosted decision trees and neural networks resulted in better
generalizability to as-yet-unseen fluids and geometries.

Our models account for variations in fluid properties, flow
rates, and geometry by taking 7 dimensionless inputs (capil-
lary number, flow rate ratio, viscosity ratio, normalized chan-
nel depth, normalized dispersed fluid inlet width, normalized
continuous fluid inlet width, and normalized outlet width) and
orifice width as the only input with units. The dimensionless
inputs and a dimensionless output (droplet diameter normal-
ized by hydraulic diameter of orifice) enable generalizability
to newly created and previously published data that the mod-
els were not trained on. Our models’ accuracy in predicting
stable and unstable DE generation demonstrates their ability
to cover both aqueous-in-oil and oil-in-aqueous droplets and
validates our simplifying assumption that DE generation can
be modeled as two independent events of droplet generation
with a non-zero yet minimal loss in accuracy.

Predictive models can be integrated with custom search al-
gorithms to create design automation tools that translate user-
specified SE and DE characteristics and input fluids to the nec-
essary geometry and flow rates. Our tool also enables rapid
performance characterization of droplet generators. For in-
stance, for a given DE generator all flow rates that result in
stable DE generation can be quickly mapped to find its deliv-
erable range of inner and outer diameters and generation rates.
Using the consensus model that averages the predictions of
neural networks and boosted decision trees, we packaged per-
formance prediction and design automation as an online and
open-source software tool to eliminate the need for design it-
erations when developing SE and DE generators. DAFD 3.0
requires the viscosities and interfacial tension of fluids used
for droplet generation, which can be readily measured using

standard rheological and in-situ techniques [30, 50] or approx-
imated using the properties of similar fluids.

The generalizable predictive power of our models is partly
due to leveraging two independently created datasets for
microfluidic droplet generation. We therefore envision fu-
ture versions of DAFD to benefit from new publicly avail-
able datasets to achieve higher accuracy and account for
broader range of parameters. As a result future reposito-
ries for microfluidic data in addition to repositories for de-
vice designs such as Metafluidics [51] would greatly benefit
community-driven design automation efforts. Future integra-
tion of our tool with other computer-aided design tools for
microfluidics [52, 53] and real-time dynamic control schemes
[54, 55] would enable automated conversion of high-level
user-specifications to fabrication-ready designs that robustly
deliver the desired performance.

Sophisticated high-throughput microfluidic operations re-
quire multiple integrated components to function optimally in
tandem. As the number of on-chip components increases, the
possible design space grows exponentially, making designing
and optimizing such platforms extremely challenging [31]. A
predictive understanding of microfluidic components can be
leveraged to achieve new functionalities more complex than
that of its individual components. We establish that a pre-
dictive understanding of SE generators can be leveraged to
achieve performance prediction and design automation of DE
generators (a two-component device). Similarly, we expect
that a predictive understanding of droplet generators in con-
junction with other components such as deterministic lateral
displacement arrays, inertial focusers, pico-injectors, and cell
and droplet sorters to enable novel high-throughput screening
platforms that are developed in a matter of days instead of sev-
eral months. Our work paves the way for custom and highly
optimized microfluidic platforms to be readily adapted to new
applications to accelerate the discovery process in life science.

4 Methods

4.1 Dimensionless numbers and flow rate
calculations

Droplet generation can be considered as a competition be-
tween viscous forces exerted by the continuous fluid and co-
hesive forces within the dispersed fluid [28]. As a result, the
capillary number (given by the ratio of viscous forces to in-
terfacial tension) is commonly used to describe the character-
istics of droplet generation. In flow-focusing droplet genera-
tion, capillary number can be defined as given in Eq. (7):

Ca. =
µc · Uc

σc,d
, (7)

where µc is the dynamic viscosity of the continuous fluid, Uc

is the characteristic velocity of the continuous fluid through
the orifice (flow rate of the continuous fluid divided by the
cross-sectional area of orifice), and σc,d is the interfacial ten-
sion between the continuous and dispersed fluids.

The flow rate of the continuous fluid can therefore be cal-
culated using capillary number, fluid properties, and device
geometry as given in Eq. (8):

Qc =
Ca. · σc,d ·Wor · H

µc
, (8)
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where Qc is the flow rate of the continuous fluid, Wor is the
orifice width, and H is channel depth.

The flow rate of the dispersed fluid can be determined
from the flow rate of the continuous fluid and the flow rate
ratio as follows:

Qd =
Qc

Φ
, (9)

where Qd is the dispersed fluid flow rate, Qc is the flow
rate of the continuous fluid, and Φ is the flow rate ratio.

Some of the predictive models developed here also take
viscosity ratio as an input, defined using Eq. (10):

λ =
µc

µd
, (10)

where µc is the dynamic viscosity of the continuous fluid and
µd is the dynamic viscosity of the dispersed fluid.

To improve the generalizability of our models to differ-
ent size scales, we converted the geometric parameters of a
flow-focusing device to dimensionless numbers by normaliz-
ing them by the orifice width (except for orifice width itself);

X =
X

Wor
. (11)

Here, X is the dimensionless (normalized) geometric param-
eter, and X can be channel height (H), dispersed inlet width
(DIW), continuous inlet width (CIW), or outlet channel width
(OCW). Orifice length was not considered as a design pa-
rameter in our models due to its negligible effect on droplet
size and rate in the dripping regime. This also enables us to
model flow-focusing geometries with unclear orifice lengths
(e.g., when the outlet channel has the same width as the orifice
width such that the orifice length could equally be considered
to be 0 or equal to the length of outlet channel).

4.2 Measurement of fluid properties

Standard pendant drop tensiometry with drop shape analysis
was used to measure the interfacial tension between different
pairs of dispersed and continuous fluids, as reported in Table
1 and as previously described [30, 56]. Since the density of
HFE 7500 oil is greater than the density of inner and outer
fluids used in this study, pendant oil droplets were suspended
within the inner or outer aqueous fluids to measure the inter-
facial tension. A metal capillary nozzle (27 gauge) was used
to suspend oil droplets within 5 mL of inner or outer fluid.
A custom MATLAB code was used to analyze the oil droplet
shape and calculate interfacial tension, as previously estab-
lished [57, 58]. Briefly, shape analysis was conducted when
the oil droplet was as stable as possible. Since droplets were
observed at equilibrium, cohesive forces (interfacial tension)
and gravitational deformation are balanced and the simplified
Young-Laplace equation can be equated to hydrostatic pres-
sure and solved to estimate interfacial tension. All reported
interfacial tension measurements were the average of 3–6 an-
alyzed drops. The dynamic viscosity of fluids was also mea-
sured using a commercial rotational cone and plate rheometer,
as previously described [30]. Briefly, a 2◦ cone at 20◦C was
used to conduct a logarithmic flow sweep across a broad range
of shear rates (2.86479–2864.79 Hz). The average viscosity in
the linear regime was reported as the shear rate-independent
viscosity of the fluid.

4.3 Device fabrication

SE droplet generators were rapidly prototyped using a low-
cost desktop micromill (Bantam Tools) to ablate microflu-
idic channels with the smallest dimension of 75 µm out of
a polycarbonate substrate (McMaster-Carr), as previously de-
scribed [59]. Once channel geometries were etched into poly-
carbonate, plastic burrs and dirt were removed by using a soft
brush followed by sonication in IPA and DI water. Devices
were then sealed using a thin layer of PDMS (Sylgard 184)
sandwiched between two polycarbonate layers or through an
81 µm double-sided adhesive (ArCare 90445, Adhesive Re-
search) and then placed in a vacuum desiccator to remove air
bubbles and complete device sealing.

DE droplet generators were fabricated through standard
photolithography followed by soft-lithography as previously
described [30]. Briefly, a silicon wafer with two different
heights (the height at flow-focuser 2 is double the height at
flow-focuser 1) was created using 2-layer SU8 deposition and
standard photo-lithography [20]. To cast PDMS devices from
this master mold, we poured a 1:5 ratio of PDMS on the wafer,
degassed, and cured for 15 minutes at 80◦c. Inlets and out-
lets were punched using a 1 mm biopsy punch (Robbins In-
struments) and then this featured layer was placed on a blank
slab of 1:10 PDMS (that was cured for 15 minutes at 80◦C)
and baked for 48 hours at 80◦C to bond the device to the
blank slab (via off-ratio bonding) and render the PDMS device
hydrophobic (longer bake times result in smaller pore sizes
within PDMS and improve its hydrophobicity).

4.4 Single emulsion generation

Single emulsions were generated using a microfluidic de-
vice made out of polycarbonate using a low-cost desktop mi-
cromill, as previously described [35]. DI water with added
food coloring for better visualization was used as the dis-
persed fluid. NF 350 mineral oil with a viscosity of 57.2
mPa.s and density of 857 kg/m3 was used as the continu-
ous fluid and 5% V/V Span-80 surfactant (Sigma-Aldrich)
was added to the oil to stabilize droplets. Fluids were intro-
duced into the microfluidic device using syringe pumps (Har-
vard Apparatus) and syringes were connected to the device
through PVC tubing (McMaster-Carr). All fluids were fil-
tered using 0.45 µm polyvinylidene fluoride (PVDF) mem-
brane filters (Millipore) before loading. Once flow rates were
set on the syringe pumps, we waited for 10 minutes before
collecting droplets to ensure flow stability. Oil was always in-
troduced before DI water to ensure that the continuous fluid
(i.e., oil) wet the surfaces of the channels first. Droplets were
imaged using a high-speed camera (IDT Xstream) mounted
on a stereo-microscope (AmScope) and experiments were il-
luminated using an 18,000 Lumen LED light source (Ex-
pert Digital Imaging) placed underneath the microfluidic de-
vice. Once a high-speed video of an experiment was recorded,
we analyzed it using an open-source custom python code
we previously developed to record droplet diameter, gen-
eration rate, and droplet polydispersity: https://github.com/
CIDARLAB/uDrop-Generation. The dataset on SE genera-
tion is available in an Open Science Framework repository:
https://osf.io/938rs/.
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4.5 Double emulsion generation

Double emulsions were generated using PDMS microfluidic
devices fabricated as described above [30]. A variety of in-
ner and outer fluids commonly used in life science applica-
tions were used as inner and outer fluids. HFE 7500 fluori-
nated oil (Sigma-Aldrich) with a viscosity of 1.6 mPa.s with
added 2.2% ionic PEG-Krytox surfactant (FSH 157, Miller-
Stephenson) was used as the middle fluid (i.e., oil). The sur-
factant added to the outer fluid varied depending on its prop-
erties (as detailed in Table 1); in most experiments, we added
2% Pluronic F-68 with or without added 1% Tween-20, except
for the complete RPMI 1640 cell media experiments, where
only 5% added Pluronic F-127 (Sigma-Aldrich) was used to
stabilize the DEs. The majority of DE datapoints used to cre-
ate a comprehensive dataset and initially train models were
taken from our previous study using a single device geometry
[30].

We also generated new data for droplets with a broader
range of inner and outer DE diameters to test model predic-
tion accuracy. These new data were generated using 2 addi-
tional DE generation devices that were either scaled down or
scaled up versions of the original device (orifice width at FF1
set to 15 or 30 µm (instead of 22.5 µm) and orifice width at
FF2 set to 30 or 60 µm (instead of 45 µm) while keeping nor-
malized channel depth, normalized outlet width, and normal-
ized dispersed and continues fluid inlet widths to 1). Prior to
running experiments, each device was surface treated to ren-
der the 2nd half of the device (FF2) hydrophilic. This was
achieved by taping (Scotch tape) over the inner and middle
fluids inlets (to protect the 1st half of the device, FF1, from
being exposed to plasma) and allowing air/oxygen plasma
to enter through the outer fluid inlet and the device outlet,
thereby rendering the FF2 region of the device hydrophilic
(10 minutes of plasma treatment)[20, 60]. Fluids were intro-
duced to the microfluidic device using syringe pumps (Har-
vard Apparatus) using 0.015" I.D. and 0.043" O.D. LDPE
polyethylene medical tubing (BB31695-PE/2, Scientific Com-
modities). All fluids were filtered using 0.45 µm polyvinyli-
dene fluoride (PVDF) membrane filters (Millipore) before
loading. Immediately after surface treatment, we flowed the
outer fluid (sheath) into the devices to ensure that the flow-
focuser 2 region of the device remained hydrophilic; 30 sec-
onds after the introduction of the outer fluid, we introduced
the middle fluid (oil) and inner fluid. The flow rates of the
middle and inner fluids were initialized with a value higher
than the intended final value to speed fluid entry into the
flow-focusers and then slowly lowered to the intended flow
rates. Once flow rates were set on syringe pumps, we waited
4-minute intervals before collecting droplets to ensure flow
stability. Droplet generation was imaged using a high-speed
camera (ASI174MM, ZWO) mounted on a stereo-microscope
(AmScope). Once DEs were collected, they were imaged
inside a cell-counter chamber slide (Countess) using an in-
verted microscope and a custom MATLAB-based image pro-
cessing workflow to measure the inner and outer diameters of
the DEs, as previously described [30]. The image process-
ing source code is available at: https://osf.io/pt6qu/?view_
only=f1690e6efd7a4773b7e26fec5a65aada. The dataset on
DE generation is available as an Open Science Framework
repository: https://osf.io/938rs/.

4.6 Training machine learning models

Neural network. The comprehensive dataset used to train
models is relatively limited (∼1000 datapoints) compared to
datasets traditionally used to train deep neural networks. We
therefore used a shallow neural network comprised of two
hidden layers of 512 and 16 nodes with rectified linear units
(ReLU) activation functions [44]. We trained the model to
minimize a mean squared error loss using an Adam optimizer
with a learning rate of 0.0003 and batches of size 32 [61].
We also L2 regularized the model parameters with a penalty
term of 0.001 to prevent the model from overfitting [49]. This
model took 7 design parameters as inputs (orifice width plus 6
dimensionless numbers: capillary number, flow rate ratio, nor-
malized channel depth, normalized dispersed fluid inlet width,
normalized continuous fluid inlet width, and normalized out-
let channel width). The model then predicted a dimensionless
droplet diameter (normalized by the hydraulic diameter of the
orifice) as the output. We did not include viscosity ratio as
an input parameter for the neural network since it resulted in
slightly lower accuracy in predicting unseen previously pub-
lished data, despite resulting in slightly higher accuracy when
predicting the comprehensive dataset.
Boosted decision trees. We used the XGBoost package for
implementing the boosted decision trees [62]. Our model con-
sists of 100 boosted trees, trained to minimize a mean squared
error loss with an L2 regularization penalty term of 1 and a
learning rate of 0.3. To prevent individual trees from overfit-
ting, we limited tree depth to 6 and halted leaf node splitting
once their weight was below 1. This model took 8 design
parameters as inputs (orifice width plus 7 dimensionless num-
bers: viscosity ratio, capillary number, flow rate ratio, nor-
malized channel depth, normalized dispersed fluid inlet width,
normalized continuous fluid inlet width, and normalized out-
let channel width). The model then predicted a dimensionless
droplet diameter (normalized by the hydraulic diameter of the
orifice) as the output.
Evaluation. We assessed models by randomly partitioning
the comprehensive dataset into train and test sets, compris-
ing 80% and 20% of the original dataset, respectively. Table
3 displays the average accuracy metrics against the test set
across 15 randomized training sessions. The scatter plots of
predictions for all figures are shown based a single model pre-
dictions that had a prediction performance close to the average
performance of 15 randomized training sessions. The source
codes for training, testing, and validating the neural network
and the boosted decision trees are available on Open Science
Framework: https://osf.io/938rs/ and our GitHub repository:
https://github.com/CIDARLAB/DAFD-website.

4.7 Parameter significance study

For boosted decision trees, we defined parameter significance
as the average loss reduction across the node splits where the
parameter serves as the decision variable (also referred to as
gain in XGBoost). We calculated each parameters’ signifi-
cance for 15 randomized training sessions and reported their
averaged significance in Fig. 4f.i. Moreover, we repeated our
evaluation of parameter significance on subsets of the compre-
hensive dataset, constraining each subset to only include cer-
tain datapoint types: single emulsions, double-emulsion inner
diameters, and double-emulsion outer diameters, as depicted
in Figures 4f. ii., iii., and iv., respectively.
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4.8 Single emulsion design automation

In DAFD 3.0, users first select whether to generate a design
for single or double emulsions. For single emulsions, the user
enters the desired droplet diameter and/or generation rate, rhe-
ological properties of fluids (e.g., viscosities, interfacial ten-
sion), and any constraints to the geometric design or flow con-
ditions of the droplet generator. A custom iterative optimiza-
tion algorithm is then used to find a design and flow rates that
deliver the desired performance, as described previously [35].
First, the closest experimental data point is found that fits the
design constraints. If this closest point fits all constraints and
produces a diameter and rate within 3 µm and 15Hz, respec-
tively, the experimental point is returned without design iter-
ations. If the closest point is not within these ranges, an iter-
ative optimization process is implemented. For a maximum
of 5000 iterations, each parameter is stepped up or down by
a specific amount, unless this parameter is constrained or this
new value passes the preset parameter bounds (Supplemen-
tary Table 6). In this workflow, the average prediction of both
the neural network and boosted decision trees are used to pre-
dict droplet diameter. Prediction accuracy is determined by a
model error cost function:

C(x) = |D̃desired − D̃x| + |F̃desired − F̃x| (12)

where C(x) is the cost of a design x, D̃ is the scalar normal-
ized droplet diameter, and F̃ is the scalar normalized genera-
tion rate. Both droplet diameter and generation rate are nor-
malized to a standard scalar to prevent bias from the larger
range of possible generation rates (hundreds to thousands)
compared to diameters (tens to few hundred). If the user only
specifies diameter or rate, only that value is included in the
cost function. This process is repeated until the cost function
reaches zero, the maximum number of iterations is reached,
or the change in the cost function is less than a preset toler-
ance of 10−9. The geometric design parameters and the flow
conditions of the final solution is then returned to the user
alongside the predicted droplet diameter and generation rate.
Additionally, the predicted diameters and generation rates for
flow rates up to ±25% of the designed value are provided to
construct a performance heat map as a device-specific opera-
tion guideline for users. The source code for our SE design
automation algorithm is available on our GitHub repository:
https://github.com/CIDARLAB/DAFD-website.

4.9 Double emulsion design automation

A separate approach is implemented for design automation of
double emulsion generators (since this requires pairing two
droplet generators in series). First, the user provides the de-
sired inner and outer diameters and the rheological proper-
ties of their desired inner, middle, and outer fluids. Next, six
preset devices can be selected, which have orifice widths of
15 µm, 22.5 µm, and 30 µm at FF1 (i.e., orifice widths of
30, 45, 60 µm at FF2, respectively) and a normalized chan-
nel depth of 1 or 1.33. If none of the six devices are se-
lected by the user, all are considered in the design automa-
tion workflow. The user can also specify a custom double
emulsion generator geometry if preferred. After taking the
user inputs, the entire flow space of the two droplet genera-
tors is simulated (50–650 µL/hr for the inner aqueous fluid,
200–1200 µL/hr for the middle fluid, and 1500–10000 µL/hr

for the outer aqueous fluid). The dispersed flow rate of flow-
focuser 2 (FF2) is simulated across all unique combinations
of the total flow rate of FF1 (inner aqueous fluid flow rate
plus the middle fluid flow rate) to ensure that the final de-
sign is compatible with conservation of mass. Each of the
data points of FF1 is then paired with points from FF2 that
have matching flow conditions and less than a 5% predicted
generation rate difference (GRD). Any designs outside of a
5% GRD are deemed unstable and excluded from considera-
tion. No solution is returned if no points with a GRD less than
5% are found. The pairings with GRD < 5% are then ranked
according to the total percentage error in their predicted in-
ner and outer diameters from the user-specified values. Top
candidate designs are then recommended to the user in case
a certain generation rate is preferred or an error in the in-
ner or outer diameter is more tolerable. The source code for
DAFD 3.0 and the design automation workflow is available at
https://github.com/CIDARLAB/dafd-website.

4.10 Data availability

The comprehensive dataset and its subsets (SE and DE
datasets) are available as an Open Science Framework: https:
//osf.io/938rs/ and DAFD’s website at: http://dafdcad.org.

4.11 Code availability

All source code generated and used in this study for per-
formance prediction and design automation SE and DE
droplets are available at: https://github.com/CIDARLAB/
DAFD-website
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Supplementary Information Information on range of cap-
illary numbers and flow rate ratios included in this study is
provided in Supplementary Fig. 1. Information on previ-
ously published experimental datasets and machine learning
approaches for flow-focusing droplet size prediction is pro-
vided in Supplementary Table 1. Additional information on
previously published scaling laws, their performance against
the comprehensive data, and their constants when fitted to our
dataset can be found in Supplementary Note 1, Supplementary
Table 2, and Supplementary Fig. 2–12. Droplet diameter and
generation rate prediction accuracies for 14 consecutive train-
ing sessions for the neural network and boosted decision trees
can be found in Supplementary Fig 13 & 14, respectively. In-
formation on including viscosity ratio as a design parameter
of the neural network is provided in Supplementary Note 2
and Supplementary Table 3. A comparison of the accuracies
of our machine learning models in predicting inner and outer
diameters of DEs in our dataset is provided in Supplementary
Figure 15. Schematic overview of the algorithms developed
for design automation of SE and DE generators are provided
in Supplementary Figures 16 & 17, respectively. The input
desired performance and constraints and the DAFD suggested
geometry and flow rates for SE and DE design automation
examples are provided in Supplementary Tables 4 & 5, re-
spectively. The parameter range and step-size for SE design
automation is provided in Supplementary Table 6.
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