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Abstract

Motivation: High-throughput protein screening is a critical technique for

dissecting and designing protein function. Libraries for these assays can be

created through a number of means, including targeted or random mutagen-

esis of a template protein sequence or direct DNA synthesis. However, mu-

tagenic library construction methods often yield vastly more non-functional

than functional variants and, despite advances in large-scale DNA synthesis,

individual synthesis of each desired DNA template is often prohibitively ex-

pensive. Consequently, many protein screening libraries rely on the use of

degenerate codons (DCs), mixtures of DNA bases incorporated at specific

positions during DNA synthesis, to generate highly diverse protein variant

pools from only a few low-cost synthesis reactions. However, selecting DCs

for sets of sequences that covary at multiple positions dramatically increases

the difficulty of designing a DC library and leads to the creation of many

undesired variants that can quickly outstrip screening capacity.

Results: We introduce a novel algorithm for total DC library optimiza-

tion, DeCoDe, based on integer linear programming. DeCoDe significantly

outperforms state-of-the-art DC optimization algorithms and scales well to

more than a hundred proteins sharing complex patterns of covariation (e.g.

the lab-derived avGFP lineage). Moreover, DeCoDe is, to our knowledge,

the first DC design algorithm with the capability to encode mixed-length

protein libraries. We anticipate DeCoDe to be broadly useful for a variety of

library generation problems, ranging from protein engineering attempts that

leverage mutual information to the reconstruction of ancestral protein states.

Availability: github.com/OrensteinLab/DeCoDe

Contact: yaronore@bgu.ac.il

Introduction

A protein’s function is inextricably linked to its amino acid sequence. Sta-

bility, flexibility, enzymatic turnover, and binding affinity all depend directly

on the specific structures available to the sequence of a given protein (9, 25).

Due to the critical importance of protein products in medicine and industry, a

number of high-throughput screening techniques, including cell-surface dis-

play (3, 5, 10, 32), phage display (37)), mRNA display (31, 40), and droplet-

based enzyme screens (1, 33) have been developed to link protein sequence

to function. The majority of these techniques allow directed evolution for

the development of functional properties. These techniques all require start-

ing libraries of DNA encoding a vast number of protein variants, generally

> 106. Consequently, a number of strategies have been developed to enrich

screening libraries for protein variants with a high likelihood of functional-

ity.

Historically, targeted protein library design has relied on the expertise

of trained biochemists. However, beginning in the early 2000s, computa-

tional methods for linking protein sequence to function started to emerge.

Initial methods employed biophysical models of protein structure and en-

abled computational modeling of hundreds to thousands of protein variants

prior to experimental screening (16, 19). More recent developments em-

ploy machine learning to rapidly predict the function of a novel protein

sequence without the computational expense of simulating protein dynam-

ics. These machine learning methods predict function for large, targeted

protein libraries of a size on par with the throughput of screening methods

(7, 34, 45). In many cases, these libraries encode covarying sequence struc-

tures to maximize the number of properly folded functional variants (15, 21).

Therefore, testing these predictions in experimental screens requires the abil-

ity to quickly and cheaply generate pools of DNA templates with covarying

residues that code for protein variants.

The gold standard for DNA library construction is direct DNA synthe-

sis of each individual library member followed by pooling (4). This strategy

guarantees the inclusion of each desired DNA sequence without introducing

off-target constructs. However, direct synthesis is often prohibitively expen-

sive for large libraries and has limitations on both the length of each synthe-

sized construct and the total number of constructs that can be synthesized in

parallel. While recent advances in DNA synthesis technology are enabling

direct and specific synthesis for longer and larger libraries (20, 26, 29), the

number of possible full length protein-coding constructs (103 - 106) remains

several orders of magnitude below the desired library sizes for most protein

screening methods (106 - 1013).

Methods that exploit the redundancy of the genetic code to generate

large, semi-targeted libraries balance low cost, simple production with li-

brary output sizes suitable for protein screening. A degenerate codon (DC)

is a mixture of nucleotide triplets capable of collectively encoding more than

one amino acid (2, 17, 44). DC libraries combine mixtures of nucleotides at

specific positions during DNA synthesis to ultimately allow expression of

protein mixtures from a single pooled DNA synthesis reaction. The compo-

sition of the nucleotide mixture incorporated at a given position allows DCs

to be designed such that they include only specific subsets of the codon table,

giving experimenters tighter control over the identity of the protein mixture

than with simple random library construction. However, as the identity of the

codon generated within each DNA construct is independent of every other

DC, including a large number of DCs can quickly generate a library of pos-

sible DNA and protein sequences too large to be screened.

A number of groups have developed computational methods to max-

imize the number of desired target sequences created using DCs under a

user-specified library size. Unfortunately, this problem is NP-hard (27, 28),

meaning that a fast (polynomial time) algorithmic solution is extremely un-

likely to exist. Instead, researchers have had to rely on a variety of heuristics

or relaxations of the problem to develop algorithms that efficiently design

DC libraries. One of the first methods to allow simultaneous optimization of

all covarying sites was LibDesign (24). LibDesign optimizes DC usage to

include as many complete targeted protein sequences as possible in the final

library under a limit on the total number of sequences produced. As a result,

libraries designed by LibDesign directly account for the three main struc-

tures of protein covariation as shown in Figures 1A, 1B, and 1C. However,

because this algorithm relies on brute-force search, it is computationally in-

efficient and intractable for modern protein library designs that may vary at

dozens or more positions. Moreover, LibDesign is incapable of account-

ing for length variation within the target library or using multiple synthesis

reactions (i.e. a DNA library comprised of multiple sublibraries with each

sublibrary produced according to a separate DNA template) to cover more

targets without incurring large library size penalties.

As an alternative to total-library optimization, Optimization of Com-

binatorial Mutagenesis (OCoM) measures library quality by the maintenance

of single and pairwise mutational frequencies (Figures 1A and 1B) and op-

timizes libraries using integer linear programming (ILP) (27). However, the
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Fig. 1. Examples of covariation structures within protein libraries (top row). For each covariation pattern, an optimal library was generated with a total size limit of 6 DNA

sequences (bottom row). The amino acid sequences encoded by this library, along with the total number of targets covered is shown. (A) A library with two independently

varying positions is shown (top). The DC library generated for this set of sequences was able to code all 6 targets under the total library size limit of 6. (B) A library with two

covarying positions is shown (top). The DC library generated for this set of sequences was able to code only 4 targets under the total library size limit of 6. Note that the third

variable position is not degenerate in the optimal library. (C) A library with multiple covarying positions and an indel mutation is shown (top). The DC library generated for this

set of sequences was able to code only 3 targets under the total library size limit of 6. By adding a second sublibrary, the indel mutation could be handled by templates with

different lengths and the total coverage increased to 5 targets.

pairwise sequence potential employed by OCoM fails to capture higher-

order covariation patterns (Figure 1C) that would be explicitly considered

under LibDesign’s objective. Such patterns are particularly important for

functional networks within proteins (13, 23, 38) and could prove critical

for the generation of libraries optimized for inclusion of functional variants.

Furthermore, OCoM cannot design libraries of multiple lengths.

Due to the problem’s hardness, some groups have introduced relax-

ations to solve it in polynomial time with respect to the input size. SwiftLib

is a DC optimization algorithm based on dynamic programming (DP) (14).

To reduce computational complexity, SwiftLib considers each position of

the protein library independently. Critically, SwiftLib can include multiple

DCs at a given position to better cover the target library while staying under

the same diversity limit. This strategy dramatically reduces the total size of

the final library by minimizing or eliminating off-target amino acid inclu-

sion at a given position. Despite these advantages, the simplification of the

DC design problem used by SwiftLib eliminates its ability to account for

covariation. While SwiftLib allows for the use of multiple degenerate DNA

templates, it does not account for a gap and, therefore, lacks the ability to

encode mixed length libraries.

Here, we present Degenerate Codon Design (DeCoDe), an algorithm

for total-library DC optimization based on ILP that simultaneously addresses

three critical gaps in current algorithmic solutions to DC library design: (i)

direct accounting for high-order covariation, (ii) optimization over mixed

length libraries, and (iii) inclusion of multiple degenerate DNA templates

to cover more proteins of the input library under experimental constraints.

For small libraries, DeCoDe often achieves optimal library designs in a rea-

sonable amount of time (hours to days). For larger libraries, DeCoDe will

output a feasible solution after a given time limit, and will report the gap

between the current best number of targets covered and an upper bound on

the optimal design. Because of its distinct advantages, we expect DeCoDe to

be applicable to numerous protein engineering challenges including library

design for directed evolution, reconstruction of ancestral protein states, and

high-throughput biochemical analysis.

Methods

Preliminaries. We start with a few formal definitions that will aid in the

problem definition and ILP formulation. Proofs supporting all ILP con-

straints as well as the complete ILP formulations can be found in the Sup-

plementary Information.

Definition 1: An amino acid sequence is a string over the amino acid al-

phabet Σaa plus a gap character indicating the absence of an amino acid at

a given position.

Definition 2: A codon is a DNA triplet coding a single amino acid or stop

or a gap character indicating the absence of a DNA triplet at a given position.

Definition 3: A degenerate nucleotide represents a subset of {A,C,G,T }.

In general, a symbol in an alphabet is said to be degenerate if it repre-

sents a set of symbols within the same alphabet and that set has a cardinality

greater than one. Nucleotide degeneracy allows DNA molecules to be syn-

thesized with a mixture of nucleotides at one or more specified positions,

giving direct rise to degenerate codons.

Definition 4: A degenerate codon is a triple of degenerate nucleotides and,

thus, codes a subset of Σaa.

Whereas non-degenerate codons code one and only one amino acid

residue or stop, degenerate codons can code multiple amino acids or stops

by representing a mixture of non-degenerate codons. If we denote the DNA

triplets represented by degenerate codon x as spanDNA(x), then x covers

non-degenerate codon c if and only if c ∈ spanDNA(x).

Definition 5: A degenerate codon covers the DNA triplets represented by it

and codes the amino acids they code.

We denote the amino acids encoded by degenerate codon x by

spanAA(x), then x codes a if and only if a ∈ spanAA(x).

Definition 6: A sequence of degenerate codons, a degenerate template G =
{g1, . . . ,gP }, codes a sequence of amino acids A = {a1, . . . ,aP } if and

only if ap ∈ spanAA(gp) ∀1 ≤ p ≤ P .

A sequence of degenerate codons can be assembled to cover a

DNA library coding a large number of protein sequences. We denote by

spanAA(G) the set of amino acid sequences coded by degenerate template

G.

Definition 7: spanDNA(G) of degenerate template G is called a sublibrary.

We note that the cardinality of spanDNA(G) will grow exponentially

with the number of degenerate codons included in G, quickly outstripping

2 | bioRχiv Shimko et al. | DeCoDe: degenerate codon design

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/809004doi: bioRxiv preprint first posted online Oct. 17, 2019; 

http://dx.doi.org/10.1101/809004
http://creativecommons.org/licenses/by/4.0/


the capacity of all available experimental screening methods. Therefore,

it is necessary to constrain the maximum number of non-degenerate DNA

sequences produced, i.e. limit the cardinality of spanDNA(G).

Definition 8: A library is made up of one or more sublibraries, each cov-

ered by a single degenerate template Gs. Formally, a library is denoted by⋃
s

spanDNA(Gs).

By grouping similar sequences together in a sublibrary, each covered

by a single degenerate template, then combining the sublibraries to generate

the final library, more protein sequences can be encoded under the same

DNA diversity limit.

Problem definition. We define our problem as that of taking a set of de-

sired protein sequences and producing a degenerate template coding as many

of those sequences as possible while limiting the total number of DNA se-

quences covered as shown in Figures 1A and 1B.

Max-coverage degenerate single-template design (MC-D-
STD).

• INSTANCE:

Set T of P -long amino acid sequences {Ti} and DNA library size

limit M .

• VALID SOLUTION:

P -long degenerate template G s.t. |spanDNA(G)| ≤ M .

• GOAL:

Maximize |spanAA(G) ∩ T |.

Optionally, we allow the library to be constructed as a combination of

smaller sublibraries (Figure 1C), each covered by a single degenerate tem-

plate, and coding a fraction of the total number of targeted proteins.

Max-coverage degenerate multi-template design
(MC-DMTD).

• INSTANCE:

Set T of amino acid sequences {Ti} with a maximum length of P ,

DNA library size limit M , and number of degenerate templates g.

• VALID SOLUTION:

Set G of P -long degenerate templates {Gs}, where |G| = g, such

that
∑|G|

s=1
|spanDNA(Gs)| ≤ M .

• GOAL:

Maximize |
⋃|G|

s=1
spanAA(Gs) ∩ T |.

Proteins of multiple lengths are allowed only in the multiple template

design, as a single degenerate template codes for proteins of only one specific

length. By using x gap codons in a template of length P , a template codes

proteins of length P − x.

As noted by Parker and colleagues (27), it follows from the NP-

hardness of the protein design problem (28) that the design of degenerate

sequences varying non-independently at multiple positions is NP-hard. This

finding holds whether designing a single template or multiple degenerate

templates. Consequently, we devise a solution to this problem using integer

linear programming (ILP), a method with efficient solvers that was applied

to a myriad of NP-hard problems.

MC-DSTD: Single library formulation. We first present a solution to the

problem in which we cover the library using only a single sublibrary (one

degenerate template). This restriction simplifies the calculation of the total

produced library size |spanDNA(G)|, which ordinarily requires multiplica-

tion of independent variables, an operation that is disallowed in linear pro-

grams.

Objective. To address this problem, we introduce the objective function:

max
∑

i

ti

where i indexes an indicator variable such that ti denotes whether target

protein sequence Ti in the target library T can be translated from the set

of DNA sequences G created by the protein sequence library. Formally,

ti = 1 ⇐⇒ Ti ∈ spanAA(G). By optimizing for inclusion of full length

sequences, DeCoDe implicitly captures covariation structures within the li-

brary (Figures 1B and 1C).

Single degenerate codon per position constraint. We introduce

the variable Gspd where s denotes the index of the degenerate template,

p denotes the position of the degenerate codon in the degenerate template

with P representing the total number of positions, and d denotes the use of

the dth degenerate codon at that specified position. Note that here, the MC-

DSTD problem, s = 1 as we are only considering the special case of having a

single degenerate template cover the entire library. Upon the variable Gspd,

we introduce the following constraint:∑

d

Gspd = 1 1 ≤ s ≤ |G|, 1 ≤ p ≤ P

so that only a single degenerate codon can be employed at each position of

each degenerate template.

Coverage constraints. We introduce integer matrix D and binary ma-

trix D̂. In matrix D, Dda corresponds to the number of non-degenerate

codons covered by degenerate codon d that code the ath amino acid, gap, or

stop. Matrix D̂da is a binary copy of matrix D where each value D̂da is the

evaluated truth of Dda > 0. Variable Cspa is an indicator variable for cod-

ing the ath amino acid at position p by degenerate template Gs. Therefore,

the following relationship exists between G and C variables:

Cspa =
∑

d

GspdD̂da

1 ≤ s ≤ |G|, 1 ≤ p ≤ P, 1 ≤ a ≤ |Σaa|

To indicate whether a specific target sequence Ti can be encoded by

the sublibrary set, we introduce the variable Xis. Xis indicates whether de-

generate template Gs can code the target protein sequence indexed by i. We

introduce the following constraints upon this variable, where O is defined

such that Oipa is a one-hot encoded representation of the target sequence

Ti:

∑

p

∑

a

OipaCspa − P + (P + 1)(1 − Xis) ≤ P

1 ≤ i ≤ |T |, 1 ≤ s ≤ |G|
∑

p

∑

a

OipaCspa − P + (P + 1)(1 − Xis) ≥ 0

1 ≤ i ≤ |T |, 1 ≤ s ≤ |G|

Finally, we can impose the following constraints to solve ti for all

values of i to ensure that it is covered by at least one degenerate template in

G:

−
∑

s

Xis + (|G| + 1)ti ≤ |G| 1 ≤ i ≤ |T |

−
∑

s

Xis + (|G| + 1)ti ≥ 0 1 ≤ i ≤ |T |

Total library size constraint. We note that the calculation of total pro-

duced library size, |spanDNA(G)|, requires multiplication of the total possi-

ble number of incorporated residues at each position. Because multiplication

of variables is a non-linear operation, we instead calculate the log of the span

of G and introduce the following constraint against the technology-imposed

diversity limit M to ensure that log(|spanDNA(G)|) ≤ log(M) and, there-

fore |spanDNA(G)| ≤ M in the case of a single sublibrary, s = 1:

∑

p

∑

d

Gspd log

(
∑

a

Dda

)
≤ log(M) s = 1
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MC-DMTD: Multiple degenerate templates extension. To extend the

ILP for use with multiple degenerate templates, we must adjust the calcu-

lation of the constraint on the size of the total produced library. Because

this calculation requires a sum of products, it is not trivial to devise a linear

solution. Instead, we approximate the solution by binning the log of the sub-

library size produced by each degenerate template into discrete bins ranging

from size 1 to size log(M). We then approximate the size of each sublibrary

as the exponentiated value of the upper bound of the bin, thus ensuring that

the calculated approximate sublibrary size is always greater than or equal to

the true sublibrary size across all sublibraries. Therefore, the constraint that

the total library size must be less than or equal to the user-defined limit will

always hold for a valid solution of the ILP.

To calculate the appropriate bin for the size of the sublibrary produced

by each degenerate template, we define two vectors U and L such that Un

and Ln define the upper and lower bound of bin n, respectively. We then

let Qs denote the log size of the sublibrary spanDNA(Gs) calculated as

Qs =
∑

p

∑
d

Gspd log
(∑

a
Dda

)
. We then introduce a binary-valued

variable Bsn to indicate whether the size of sublibrary s falls into the range

of bin n such that Ln ≤ log(|spanDNA(Gs)|) ≤ Un. Upon Bsn, we place

the following constraints:

∑

n

Bsn = 1 1 ≤ s ≤ |G|

∑

n

BsnLn ≤ Qs 1 ≤ s ≤ |G|

∑

n

BsnUn ≥ Qs 1 ≤ s ≤ |G|

Our upper bound on total library size when combining multiple subli-

braries is therefore calculated as:

∑

s

∑

n

BsneUn

The following constraint can be introduced to ensure that the maxi-

mum possible library size when combining multiple sublibraries does not

exceed the user-defined limit:

∑

s

∑

n

BsneUn ≤ M

Degenerate codon table. To reduce unnecessary search over equivalent

solutions, we formulate the degenerate codon table D to minimize the de-

generacy of the constructed DNA library while maintaining access to all 20

amino acid residues, stop codons, and gaps. Though 3,376 possible degener-

ate codons exist (153 plus the empty set to account for a gap), many of these

codons are redundant in the amino acids they encode. We therefore employ

a non-redundant codon table that groups all codons covering the same set

of amino acids. We select and return from this set the subset of codons that

display the least degeneracy in nucleic acid space. By removing redundant

codons from the codon table, we reduce the number of possible codon selec-

tions from 3,376 to 841.

Implementation. DeCoDe was implemented in Python using the CVXPY

package (8). All results presented here employed the Gurobi solver (12),

which provides a free licence to academic users. CVXPY also provides in-

terfaces to most common alternative ILP solvers including free and open-

source options. All results presented here were run on a server with two

Intel Xeon CPU E5-2630 v4 @ 2.20GHz CPUs and 256 GB of mem-

ory. Each run of the DeCoDe algorithm was allocated 12 hyper-threads

for the Gurobi solver and multiple runs were conducted in parallel using

GNU Parallel (41). We provide a command line interface to DeCoDe at

github.com/OrensteinLab/DeCoDe.

Fig. 2. Comparison of target coverage by DeCoDe and SwiftLib on the target se-

quence set of 94 avGFP-descended target proteins of length 239 amino acids,

where 82 positions are variable between proteins. Optimized libraries for each

method are shown comprising (A) 1 sublibrary; and (B) 2 sublibraries.

Results

We sought to apply DeCoDe to a set of library optimization problems closely

mimicking those required for a standard protein engineering project. Specif-

ically, we chose the task of covering as many sequences as possible from

the documented lineage of the green fluorescent protein originally extracted

from the jellyfish Aequorea victoria (avGFP) (30). We selected this task for

several reasons. First, avGFP and its laboratory-derived descendents have

provided a critical suite of research tools and, consequently, are the subject

of ongoing research to map the protein’s sequence onto its functional charac-

teristics such as intensity and stability (35). Second, the exact lineage of the

entire family of laboratory-derived avGFP variants is known, which makes

the task of aligning all of the sequences and identifying variations from wild

type avGFP a trivial task (18). Third, the high total number of variable sites

and the length variation within the protein family causes this design problem

to be particularly challenging or impossible for existing DC library design

algorithms.

MC-DSTD performance. First, we compared DeCoDe to an existing de-

generate codon library design algorithm to benchmark its performance. As

the most recently published method and the only open-source algorithm

compatible with multiple degenerate codon usage per position, SwiftLib (14)

represents a natural point of comparison.

The total set of avGFP-derived proteins spans several different lengths,

the most common being length 239 amino acids with all other proteins ex-

cept two being of length 238. The two exclusive proteins include large,

unique insertions and were excluded from our benchmarks since each would
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need to be ordered as individual, non-degenerate constructs in any degen-

erate codon library. While DeCoDe permits libraries of varying length,

SwiftLib requires all target proteins to be the same length. To allow for a

direct comparison between the two methods, we subset the GFP lineage to

only proteins of length 239 amino acids.

We performed library optimization for this reduced target protein set

with both DeCoDe and SwiftLib. As both algorithms are capable of increas-

ing performance by employing multiple degenerate DNA templates, we opti-

mized for a range of library size limits using either 1 or 2 sublibraries, where

each sublibrary represents an independently synthesized DNA construct. We

then measured the quality of the each algorithm’s generated library by the

number of full length sequences out of the target set of 94 proteins covered

by that DC library.

For library designs composed of only a single sublibrary, we find that

DeCoDe consistently outperforms SwiftLib in the total number of target se-

quences covered for a given library size limit (Figure 2A). Across all limits

for a single sublibrary, DeCoDe offers an improvement of between 58% and

250%. In both cases, the returned library sizes approach, but do not exceed,

the user-specified limit (Figure S1). The superior performance of DeCoDe

is a direct result of the objective function implicitly accounting for linked

variation between multiple positions, whereas SwiftLib minimizes the fail-

ure to include a desired amino acid for each position independently. Still,

DeCoDe’s runtime and memory usage are feasible by today’s standard: only

around 100 and 1000 seconds runtime and around 1 and 2.5GB for 1 and 2

sublibrary designs, respectively.

By accounting for covariation between sites, DeCoDe can also more

efficiently include multi-site patterns in the design of the DC libraries. In the

case where DeCoDe is allowed to include a second sublibrary, and therefore

better account for covariation, its performance boost over SwiftLib is even

more dramatic (Figure 2B). For all diversity limits, DeCoDe outputs a library

that covers more than twice the number of proteins coverd by SwiftLib’s

library. However, because this problem is NP-hard, both the runtime (Fig-

ure S2) and memory requirements (Figure S3) of DeCoDe tend to be much

higher than those of SwiftLib. Because SwiftLib does not attempt to opti-

mize over the problem of covariation between multiple sites, the algorithm

can find an optimal solution for its library quality metric in polynomial time.

MC-DMTD performance. In addition to the 94 proteins of length 239

amino acids explored in the above optimization task, the avGFP family in-

cludes 37 additional proteins of length 238 amino acids. Because DeCoDe

can employ multiple sublibraries and the gap codon, it is, to our knowledge,

the first algorithm able to perform total library optimization for libraries

composed of mixed length protein targets. Here, we use DeCoDe to opti-

mize a library targeting the set of 131 avGFP-derived proteins of both 238

and 239 amino acid lengths (Figure 3).

For this task, we selected a total library size limit of 107 unique DNA

species. This limit is consistent with yeast-based assays (e.g. yeast dis-

play) frequently used in conjunction with fluorescence-activated cell sorting

(FACS) to enrich for fluorescent proteins with desirable properties (39). Be-

cause the avGFP family is relatively diverse, we explored different sublibrary

counts to maximize coverage under the 107 diversity limit. Specifically, we

optimized libraries comprising 1, 2, 3, 4, 8, and 12 sublibraries. Each sub-

library represents an additional monetary and labor cost that is, in most in-

stances, offset by the improved coverage that the sublibraries achieve under

the total diversity limit. Because each additional sublibrary further compli-

cates the optimization procedure, libraries comprised of a high number of

sublibraries will likely require a prohibitively long runtime to reach a guar-

anteed optimal solution. To address this issue, we limited the total runtime to

a maximum of 48 hours and selected the solution reached by the ILP solver

under that time limit.

The inclusion of additional sublibraries dramatically improved over-

all coverage of the lineage tree (Figure S4) while keeping the total library

diversity under the 107 limit (Figure S5). When only a single sublibrary is

used, DeCoDe outputs an optimal library. However, this library only covers

32 of the 131 target sequences and all of the covered sequences are of length

239. When 2 additional sublibraries are added (for a total of 3), the library

produced by DeCoDe covers 66 proteins, or just over half of all sequences

in the lineage. This 3-member library begins to cover sequences of length

238 with diverse functions, including CFP and BFP. With 12 sublibraries,

DeCoDe covers 121 of the 131 total target sequences while generating only

7,640,832 total DNA sequences, which is well within the range of modern

DNA synthesis techniques. With this library, nearly all of the significant

functional variants are covered. As expected, there is a positive correlation

between the number of sublibraries included and the runtime (Figure S6) and

maximum memory usage (Figure S7) for each optimization problem.

By further exploring the covariation structure of the avGFP lineage

tree and comparing it with the patterns of coverage obtained when adding

additional sublibraries, several interesting patterns emerge (Figure 3). In

the case of a single sublibrary, only proteins of length 239 amino acids are

covered. This result is expected as there are more sequences of length 239

(94 sequences) than those of length 238 (37 sequences). Because the gap

codon covers the gap and only the gap, an additional sublibrary must be

ordered for each additional desired protein length.

Second, entire branches of the lineage tend to be covered together.

Because sequences lower in the tree share a common ancestor, derived se-

quences are likely clustered together within the coverage space of a single or

a small subset of sublibraries. However, not all derived sequences are cov-

ered when the algorithm begins to include a branch of the tree. DeCoDe may

determine that covering a single specific sequence within a branch may incur

a penalty toward the total diversity limit that is too great, and that sequence

may be excluded. In some cases, such as that of some terminal branches of

the CFP-derived lineage, certain protein sequences are covered with a lower

number of sublibraries (e.g. 2) and not covered when more are added (e.g.

3, 4). This pattern emerges when it becomes optimal for the algorithm to

allocate sublibraries to more tightly clustered groups of sequences when ad-

ditional sublibraries are added.

When employing a smaller number of sublibraries (i.e. 1, 2, 3), De-

CoDe returns a solution that samples shallowly from many branches within

the tree. Therefore, a greater diversity in potential functional outcomes is

explored at the expense of a limit on the total number of target sequences

covered. In contrast, with a large number of sublibraries (i.e. 4, 8, 12), the

algorithm covers large branches more completely due to the smaller total

diversity for each individual sublibrary. The major tradeoffs when employ-

ing a greater number of sublibraries are the increased computational costs

to optimize the library and the increased expense of ordering and processing

multiple synthesized DNA constructs. Therefore, the user must ultimately

decide on an optimal point between target coverage and computational and

experimental cost.

While we were able to obtain guaranteed optimal solutions for the case

of 1 and 2 sublibraries, we were unable to obtain optimality guarantees for

the libraries comprising 3, 4, 8, and 12 sublibraries under the 48 hour time

limit. However, solutions tend to rapidly improve on the objective function

and yield diminishing returns with increased runtimes (Figure S8). The ILP

solver computes an upper bound for the value of the optimal solution for

each point during the run, which can inform the user how far the current

library is from a theoretical optimum. Given these findings, we suggest that

DeCoDe is unlikely to significantly improve on the presented results with

increased time and that reaching a guaranteed optimal solution may require

a dramatic increase in runtime.

Discussion

The synthesis of large-scale protein-coding DNA libraries is often a neces-

sary first step for high-throughput protein screening assays. This synthe-

sis step often incurs a high cost, even for libraries of closely related genes.

Many research groups have focused significant efforts on reducing this pro-

hibitive cost through innovations in software (14, 24, 27), hardware (20, 26),

or chemistry (29). Among these techniques, DC libraries stand out as a

particularly attractive method, as they can cover large swaths of sequence

space without a proportional rise in synthesis cost. However, existing DC

library design solutions lack the ability to account for either linked variation,

multiple protein lengths, or both. DeCoDe was designed with careful con-

sideration of both linked and length variation, making it a particularly useful

solution for a variety of DC library design tasks.

While these design choices enable DeCoDe to tackle previously un-

tenable challenges, DeCoDe’s direct solution for the NP-hard problem of

linked variation can require significant computational resources to find opti-

mal libraries. We implemented two features to overcome these limits. The
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Fig. 3. A phylogeny of 131 avGFP-descended proteins is shown. 94 and 37 proteins of length 239 and 238 amino acids are shown by circles colored dark and light blue,

respectively. The colored segments behind each circle denote coverage by libraries comprising the number of sublibraries shown in the key in the lower right of the figure.

Important avGFP descendants exhibiting spectral variation (EYFP, CFP, BFP), intensity enhancement (EGFP), and rapid maturation (sfGFP) are labelled on the tree.

first is the use of a non-redundant codon table in the ILP formulation, which

reduces the number of constraints and variables to consider. The second is

a user-defined limit on the runtime of the ILP solver. While the ILP may

not find an optimal solution with limited runtime, it will output a feasible

solution that may be very close to the optimum.

DeCoDe is best suited for optimization tasks with high sequence simi-

larity across targets and significant covariation between amino acid positions

for high-throughput screening. For example, in the task of optimizing a li-

brary to cover the avGFP-derived family presented here, only 82 of the 239

possible positions varied. In the case of highly diverse libraries where the

majority of positions are variable, DC libraries may provide low target cov-

erage while simultaneously producing a high number of off-target sequences.

In target libraries with mostly independent positions, algorithms which as-

sume independence, such as SwiftLib (14), may be more appropriate.

Covariation between amino acid positions underlies the evolutionary

structure of protein families. Naturally evolved proteins rely on evolution-

arily conserved, interconnected networks of residue interactions to carry out

their functions (13, 23, 38). These networks can often be disrupted by even

a single amino acid change if that change is non-conservative in a necessary

physical property (11). Several research groups have exploited the preserva-

tion of these networks over time to reconstruct ancestral protein lineages and

better understand the link between protein sequence structure and function

(22, 36, 43). Due to the highly correlated, chemically conserved sequence

patterns present in these reconstructed lineages, DeCoDe offers an attrac-

tive solution to the problem of synthesizing the complete protein family for

functional testing simultaneously.

Expansions or reductions in protein domain lengths represent another

type of variation with significant implications for protein function (6). As

an example, size differences in the complementarity-determining regions

(CDRs) of immunoglobulin proteins can differentiate success and failure of

antigen binding (42). Because DeCoDe can simultaneously optimize con-

structs of various lengths under a single library size constraint, it is ideal

for generating DC libraries to screen immunoglobulin proteins for specific,

desired binding properties.

Given a set of proteins with unknown functionality, it is highly likely

that a final library designed by DeCoDe will include variants with novel,

and perhaps useful, functions. Libraries produced by DeCoDe will be most

useful when the screening method employed by the user is tolerant to off-

target proteins, as many functional variants may reside in the space of the

“off-target” sequences not present in the target set. DeCoDe-generated li-

braries stand to make a significant impact in the fields of directed evolution

and ancestral reconstruction as they have the capacity to more efficiently

screen sequence space for functional variants. Moreover, the cost reduction

achieved by the use of DeCoDe’s more efficient DC libraries enables greater

experimental throughput and a more rapid pace of functional protein discov-

ery.
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