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SUMMARY

Folding a linear chain of amino acids into a three-dimensional protein is a complex physical process that ul-
timately confers an impressive range of diverse functions. Although recent advances have driven significant
progress in predicting three-dimensional protein structures from sequence, proteins are not static mole-
cules. Rather, they exist as complex conformational ensembles defined by energy landscapes spanning
the space of sequence and conditions. Quantitatively mapping the physical parameters that dictate these
landscapes and protein stability is therefore critical to developmodels that are capable of predicting howmu-
tations alter function of proteins in disease and informing the design of proteins with desired functions. Here,
we review the approaches that are used to quantify protein stability at a variety of scales, from returning mul-
tiple thermodynamic and kineticmeasurements for a single protein sequence to yielding indirect insights into
folding across a vast sequence space. The physical parameters derived from these approacheswill provide a
foundation for models that extend beyond the structural prediction to capture the complexity of conforma-
tional ensembles and, ultimately, their function.
INTRODUCTION

Proteins carry out a variety of cellular functions that are essential

for life, including receiving and transducing chemical signals,

shuttling molecules across membranes, and catalyzing critical

biochemical reactions. Remarkably, the ability to perform these

diverse roles arises from the linear chains of amino acids that

specify protein folding and function. The first X-ray crystal struc-

ture of a globular protein prompted a fundamental question: how

does a sequence of amino acids dictate the structure of a func-

tional protein (Anfinsen, 1973; Dill et al., 2008; Kendrew et al.,

1958)? Recent computational advances, paired with tremen-

dous growth in sequence and structure data, have driven a rev-

olution in our ability to predict protein structure from sequence

(Kuhlman and Bradley, 2019). In a widely hailed milestone at

the 2020 Critical Assessment of Structure Prediction, the artifi-

cial intelligence network AlphaFold (developed by DeepMind)

accurately predicted the structures of a set of test proteins at a

resolution approaching that of experimental noise (Senior

et al., 2020). Upon this announcement, some scientists and jour-

nalists proclaimed the 50-year-old protein folding problem to be

‘‘solved.’’ Instead, we believe that this milestone represents

another beginning in the ongoing quest to understanding and en-

gineering protein folding and function.
Cell
If a folded structure can be predicted from sequence, what un-

solved questions remain in understanding the relationship be-

tween sequence and structure? At the most basic level, proteins

exist as a statistical ensemble of conformations rather than a

static structure (Frauenfelder et al., 1991; Muñoz, 2007).

Although some of the population may be folded into the pre-

dicted state, other molecules may be unfolded, partially folded,

misfolded, or folded into an alternate conformation. Further-

more, proteins must often sample multiple conformations to

function (Henzler-Wildman and Kern, 2007; Teilum et al., 2009).

Thus, a complete understanding of protein function requires a

multidimensional energy landscape that defines the probabilities

of the states and the energy barriers between them. By

comparing the number of molecules in a native folded state

with the unfolded states, we can measure the thermodynamic

protein stability; by assessing the rate of exchange between

states, we can characterize the kinetics of protein folding. This

landscape ultimately dictates the conformational populations in

solution. The balance between populations may be perturbed

by environmental conditions such as ionic strength (Bavishi

et al., 2018; Huang et al., 2013), pH (Bai andWarshel, 2019; Kou-

gentakis et al., 2020), and molecular crowding (Adams et al.,

2019; Dhar et al., 2010). Thus, the protein folding problem is

far more complex than just identifying a low-energy structure
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and therefore we need new tools to understand the full

complexity of protein folding landscapes (Fang, 2020).

There are many practical implications of determining both the

structure of a folded protein and the fraction of molecules adopt-

ing that conformation. A mutation that preserves the low-energy

fold but destabilizes the conformational ensemble (for instance,

such that only half of the molecules remain folded) may impact

protein function, especially in the complex context of the cellular

environment where misfolded proteins can aggregate or be

degraded. In fact, most disease-associated human single-nucle-

otidepolymorphisms (SNPs) destabilize protein structure (Ferrer-

Costa et al., 2002; Wang and Moult, 2001). Understanding how

changes in protein sequence influence folding is therefore critical

for predicting the effects of SNPs and identifying destabilized

protein regions as promising therapeutic targets to treat cancer

(Bhullar et al., 2018; Counihan et al., 2018; Luengo et al., 2017)

and infectious disease (De Clercq and Li, 2016; Flannery et al.,

2017; Perfect, 2017). The importance of stability also extends

beyond disease pathology. Stable proteins have industrial appli-

cations as catalysts for antibiotic and chemotherapeutic synthe-

sis (Bruggink and Roy, 2001; Chen et al., 2006; Kondo and Hotta,

1999; Martin and Fischer, 1983; Tatsis et al., 2017; Volpato et al.,

2010), catalysts for bioremediation and green chemistry (Peixoto

et al., 2011; Sheldon andWoodley, 2018), lipases and proteases

for detergents (Olsen and Falholt, 1998; Vojcic et al., 2015),

flavoring and digestive additives (Merz et al., 2015; Raveendran

et al., 2018), nanoengineering scaffolds (Ben-Sasson et al.,

2021), and degradative enzymes for cellulosic biofuels (Reetz,

2013). To be used for these purposes, it is essential that native

or engineered proteins not only adopt a particular fold but also

remain folded under specific, and potentially harsh, conditions

while still being able to carry out their desired functions.

The enormous scale of potential sequence space, combined

with the rarity of well-folded proteins in that space, renders it

difficult to understand and engineer protein stability. For a de

novo design, the potential search space is astronomically com-

plex. A typical 300-amino-acid protein is just one of 20300

possible amino acid combinations, a number that far surpasses

the number of atoms in the known universe. Even the number of

natural protein sequences assumed to fold and function grows

vast as next-generation sequencing produces genomic data at

record pace (Land et al., 2015; Lek et al., 2016; Ufarté et al.,

2015). Simply put, it is intractable to experimentally determine

the predicted fold and stability for all possible sequences of in-

terest.

Although protein folding and stability are complex problems,

they are physical problems. By developing a mechanistic under-

standing of the physical forces that dictate these processes, we

can eventually learn to reliably predict stability, even for proteins

that have not been directly tested. Successful modeling of other

complex systems suggests that such an approach—while ambi-

tious—is not impossible. As noted in ‘‘A forecast for large-scale,

predictive biology: lessons frommeteorology’’ section within this

issue, atmospheric science has advanced to the point that local

weather can be predictedweeks in advance, which is a landmark

achievement for such a complex and dynamic system (Covert et

al., 2021). We posit that vast numbers of measurements of abso-

lute physical quantities (e.g., temperature, humidity, and

atmospheric pressure) collected over decades of varying condi-
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tions have been critical to this success. Using a universal and ab-

solute measurement scale makes it possible to both combine

data across space and time and compare measured quantities

to predictions based on physical models.

We are yet to reach this level of mechanistic understanding

and predictive ability for protein folding landscapes. To get there,

we must be able to systematically perturb proteins across

sequence and environmental conditions and then accurately

measure the effects of these perturbations on stability, using

the physical language of thermodynamic and kinetic constants.

Here, we review methods for measuring protein stability at a va-

riety of resolutions and throughputs and highlight emerging tech-

nologies capable of yielding quantitative information at scale.

PROTEIN STABILITY

Given the vast number of potential protein states and conforma-

tions, how canwe define protein ‘‘stability?’’ For many small, sin-

gle-domain proteins, folding can be approximated as a two-state

system in which there are two populations of molecules—folded

and unfolded—separated by a single free-energy barrier (Jack-

son, 1998). Then, stability can be quantified as the difference in

free energy between the folded and unfolded states (the folding

free energy,DGfold) (Figure 1). When folding is favored, exchange

between these two states is dictated by a faster folding rate con-

stant (kfold) and a slower unfolding rate constant (kunfold). This

simplifying assumption cannot be used in systems where inter-

mediate states are significantly populated at equilibrium, such

that there are multiple folding rate constants (i.e., kfold,i, kunfold,i).

In these cases, measuring rate constants offers the ability to

study folding intermediates that may not be detectable in equilib-

rium experiments (Walters et al., 2009). However, a two-state

approximation may still be valid even for large multi-domain pro-

teins, as long as unfolding and refolding occur reversibly. DGfold

thus provides a useful physical constant that enables compari-

sons and predictions across multiple conditions and experi-

ments, typically favoring the folded and functional protein state

by between 5 and 15 kcal mol�1 (Alm and Baker, 1999).

In practice, measuring DGfold is challenging. Most proteins are

stable and rarely unfold spontaneously; when they do, they often

refold on the millisecond timescale, making it difficult to study

their folding trajectories (Eaton et al., 2000). Instead, the most

tractable way to experimentally probe stability is by unfolding

proteins with some type of perturbation. This can be achieved

directly with a single-molecule application of mechanical loads,

for example, by using optical trapping (Cecconi et al., 2005; Kel-

lermayer et al., 1997) or atomic force microscopy (Puchner and

Gaub, 2009; Rief et al., 1997). Although, these approaches allow

direct detection of protein folding states and measurement of

transition state distances, they typically demand sophisticated

instrumentation. A broadly used alternative is to unfold proteins

by increasing temperature or introducing chemical denaturants

such as urea or guanidine hydrochloride (Pace and Scholtz,

1997). Changes in the fraction of folded protein (ffold) can then

be monitored as a function of the perturbation. Although this

can be achieved at atomic resolutionwith nuclearmagnetic reso-

nance (NMR) approaches, NMR is challenging to perform across

many residues and conditions (Dyson and Wright, 2004). As we

will discuss below, other readouts such as spectroscopy and



Figure 1. Protein folding and stability
governed by thermodynamic and kinetic
parameters
Folding a linear amino acid sequence into a three-
dimensional structure is a complex process that is
essential for native protein function (left). Changes to
the sequence (red) can disrupt folding and ultimately
alter function (right). The two-state protein folding
model assumes there are two populations of mole-
cules—folded and unfolded—separated by a single
free-energy barrier. The exchange between these
two states can then be described by the folding rate
(kfold) and unfolding rate (kunfold), while the difference
in free energy between the states is given by the
folding free energy (DGfold). Mutations can affect
both folding kinetics (by altering kfold and/or kunfold)
and thermodynamic stability (by altering DGfold).
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mass spectrometry offer scalable alternatives to infer ffold as a

function of denaturation. When these measurements are per-

formed at equilibrium under reversible conditions, the transition

curve can be fit to determine the slope of the transition region

(mvalue) and the temperature (Tm) or concentration of denaturant

(Cm) at which half of the protein is folded. These parameters can

be used to calculate DGfold (Pace and Scholtz, 1997), which rep-

resents the protein stability under no denaturing conditions. This

approach requires fewassumptionsbeyonda two-statemodel to

reach a relevant thermodynamic parameter for protein stability.

Developing generalizable models of protein stability requires

the ability to measure DGfold for many sequences in parallel. A

wide variety of alternative methods have been attempted to in-

crease throughput by selecting for functional variants and infer-

ring stability from processes that require a folded protein under

physiological conditions, such as cellular protein expression,

ligand binding, and catalytic activity (Magliery and Regan,

2004). These approaches offer many advantages in cost, labor,

and scale for identifying and characterizing functional variation.

Nevertheless, these measurements may have only an indirect

relationship to the folding energy landscape, as stability is only

necessary to the extent for functional selection; therefore, we

do not review these methods here. We also omit discussion of

aggregation assays. Although valuable in specific contexts,

such as probing the mechanistic origins of neurodegenerative

diseases (Levy et al., 2019) and optimizing monoclonal antibody

formulation (Goldberg et al., 2011), these methods may

confound kinetic and thermodynamic stability effects.

QUANTITATIVE AND SCALABLE APPROACHES FOR
MEASURING PROTEIN STABILITY

Recent approaches have attempted to reduce the gap between

direct but small-scale and large-scale but inferential measure-
ments of protein stability (Figure 2). A

shared strength of calorimetry, spectros-

copy, mass spectrometry, and gel electro-

phoresis approaches is the power to derive

thermodynamic parameters and, in some

cases, kinetic rate constants (Walters

et al., 2009). In addition, ongoing advances

in liquid handling automation and miniatur-

ization tools offer the potential to expand
the throughput of these more direct but traditionally low-

throughput approaches. At the other end of the spectrum,

massively parallel screens with mass spectrometry and

sequencing readouts have the power to characterize >104 pro-

teins at once, returning indirect measurements of stability that

facilitate broad mapping of the effects of amino acid substitu-

tions on folding.

Beyond the scale of measurement, a critical aspect of each of

these technologies is the precision and accuracy of measure-

ment. For direct and inferential approaches alike, experimental

measurement quality depends on factors ranging from the num-

ber of data points of the unfolding event and the sensitivity of the

fraction-folded readout to sample preparation and instrument

calibration. We further note that the accuracy of a given mea-

surement or protein folding model cannot be proven, only

disproven (Pace and Scholtz, 1997), underscoring the need for

multiple ways to determine stability. Here, we review a selection

of technologies (Table 1) and discuss benefits and limitations of

each technology.

Calorimetry-based methods
Differential scanning calorimetry (DSC)

DSC measures the difference in power input or heat flow

required to change the temperature of a purified protein in buffer

comparedwith the buffer alone. This approach allows the deriva-

tion of thermodynamic properties of folding (DGfold, DHfold, and

DSfold), the midpoint of the thermal transition (Tm), and the heat

capacity (Cp) (Johnson, 2013). The main advantage of DSC is

the ability to derive multiple fundamental thermodynamic values

from one experiment without requiring any protein labeling.

Comparisons between samples can provide additional insights

into the mechanism behind mutational impacts on protein stabil-

ity (e.g., solvent interactions that contribute to DCp values)

(Prabhu and Sharp, 2005). DSC has been adapted to a 96-well
Cell Systems 12, June 16, 2021 549



Figure 2. Comparison of methods by
maximum throughput versus structural
resolution
Methods for measuring protein stability are land-
scaped bymaximum throughput (number of variants
that can be tested in one experiment) versus struc-
tural resolution (whether the protein is probed on the
residue, fragment, domain, or protein level). The
color of each box indicates whether that method
returns a less direct (light) or more direct (dark)
readout of thermodynamic stability. The methods
that we review in detail here (underlined) are also
colored to indicate whether they have been scaled
with automation (orange) and numbered corre-
sponding to row numbers in Table 1. Abbreviations
used, in order of superscripts: nuclear magnetic
resonance, NMR; differential scanning calorimetry,
DSC; circular dichroism, CD; small-angle X-ray
scattering, SAXS; hydrogen-deuterium exchange,
HDX + mass spectrometry, MS; stability of un-
purified proteins from rates of hydrogen-deuterium
exchange, SUPREX; stability of proteins from rates
of oxidation, SPROX + tandem mass tag, TMT
multiplexing; thermal proteome profiling, TPP.
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plate format by using an autosampler (Plotnikov et al., 2002) that

is now commercially available. Further improving throughput is

complicated by the conflicting needs to decrease the amount

of sample required and parallelize readouts while simultaneously

maintaining high signal-to-noise ratios and ensuring samples

have sufficient time to equilibrate prior to measurement. Recent

advances in microfluidic miniaturization may offer promising so-

lutions to these challenges (Yu et al., 2017).

Spectroscopy-based methods
Circular dichroism (CD)

CD spectroscopy measures the differential absorption of circu-

larly polarized light by chiral chemical structures. Specifically, a

helices and b sheets preferentially absorb polarized light in the

far-UV range (180–250 nm) and produce characteristic spectra,

allowing CD signal to report on the presence of secondary struc-

ture. In addition, CD signal in the near-UV range (250–320 nm)

reports on the chemical environment of aromatic residues for

analysis of tertiary structure. When performed during reversible

thermal or chemical unfolding, CD measurements allow calcula-

tion of DGfold from the observed transition curve (Greenfield,

2006a, 2006b). Combining CD measurements with stopped-

flow instrumentation can also be used to measure kfold,i (Sato

et al., 2000). Although CD conventionally uses single cuvettes,

measurements have recently been adapted to higher throughput

with instrumentation including microplate CD spectrometers (Pi-

licer et al., 2020) and capillaries (Fiedler et al., 2013; Moore-Kelly

et al., 2019).

UV absorbance

Absorption of UV light can be used to report on changes to the

chemical environment of aromatic residues. Aromatic residues

in proteins absorb strongly at 280 nm, and this absorbance is

frequently used to determine protein concentration (Noble and

Bailey, 2009). For some proteins, other wavelengthsmay provide
550 Cell Systems 12, June 16, 2021
greater change in absorbance between the

folded and unfolded states (Kuwajima

et al., 1996). Upon unfolding, protein
absorbance at 230-nm decreases, primarily due to tryptophan,

as the surrounding microenvironment becomes increasingly hy-

drophilic (Donovan, 1969; Móra and Elödi, 1968). Measuring the

change in absorbance in response to chemical perturbation can

be used to derive DGfold from transition curves and determine

kunfold from time-resolved experiments. This method can also

be performed in 96-well format (Liu et al., 2009).When compared

with CD measurements for RNase H and maltose-binding pro-

tein, low-throughput values differed by up to 1.5 kcal/mol and

high-throughput values differed by up to 3.0 kcal/mol (Liu

et al., 2009). A challenge with implementing this technique

more broadly is the requirement for chromophores, as trypto-

phan is only approximately 1% abundant in proteins (UniProt

Consortium, 2019). Even when present, chromophores must

give an appreciable signal-to-noise difference for unfolding at

the chosen wavelength.

Intrinsic fluorescence

Similar to intrinsic UV absorption, intrinsic fluorescence experi-

ments report on changes to the chemical environment of aro-

matic residues or fluorescent cofactors in a protein. UV excita-

tion causes the intrinsic fluorophores in the protein, such as

the amino acid tryptophan, to emit light with an intensity and

wavelength that depend on the polarity of the local environment.

Upon protein unfolding, changes in the local polarity can cause

the fluorescence to decrease in intensity and shift to longer

wavelengths (Sauer et al., 2010). Measuring the change in fluo-

rescence upon thermal or chemical perturbation can then be

used to determine DGfold, kfold,i, and kunfold,i (Eftink, 1994).

Intrinsic fluorophores are not found in all proteins and are gener-

ally weak, often giving low signal to noise. Conversely, if multiple

intrinsic fluorophores are present, the signal from multiple local

unfolding events will be convoluted in cases when the two-state

model does not apply. It can be challenging to address these is-

sues, since using mutations to add or remove intrinsic



Table 1. Selected methods spanning direct to inferential measurements of protein stability

Method name Scale Returned parameters Notes References

1 Differential scanning

calorimetry (DSC)

102 DGfold, DHfold, DSfold, Tm,

DCp calculated from heat

flux or heat flow with

increasing temperature

Most direct measurement of

thermodynamic parameters.

May be scaled with liquid

handling automation or

microfluidics.

(Johnson, 2013)

2 Circular dichroism

(CD)

101 DGfold (Tm, DHm, DCp or

Cm, m value) derived from

inference of folded

population after chemical

or thermal perturbation;

kfold,i & kunfold,i

Reports on protein

secondary structure.

May be scaled with plate

reader or liquid handling

automation.

(Greenfield, 2006a,

2006b; Sato et al., 2000)

3 UV absorbance 102 DGfold (Tm, DHm, DCp or Cm,

m value) derived from

inference of folded

population after chemical

perturbation; kfold,i & kunfold,i

Reports on local environment

of protein chromophore. May

be scaled with plate reader.

Steep pre and post-transition

baselines may lead to larger

parameter derivation error.

(Kuwajima et al., 1996;

Liu et al., 2009)

4 Intrinsic fluorescence 102 DGfold (Tm, DHm, DCp or Cm,

m value) derived from

inference of folded

population after chemical

or thermal perturbation;

kfold,i & kunfold,i

Reports on local environment

of protein fluorescent residue or

cofactor. May be scaled with

plate reader.

(Eftink, 1994)

5 Extrinsic fluorescence 102 Th derived from transition

curve reporting on exposed

hydrophobic residues;

kobserved

Uses dye with thermal scanning.

Possible dye-sample compatibility

issues and dye may perturb

measurement: Th may not

compare to Tm. May be scaled

with RT-PCR equipment.

(Biggar et al., 2012;

Lavinder et al., 2009)

6 Small-angle X-ray

scattering (SAXS)

101 Rg and Kratky plots report on

protein compactness with

chemical or thermal

perturbation; kfold,i & kunfold,i

Requires light source. Frequently

scaled with liquid handling

automation.

(Akiyama et al., 2002;

Brosey and Tainer, 2019;

Konuma et al., 2011)

7 Hydrogen-deuterium

exchange (HDX) + mass

spectrometry (MS)

100 protection parameters and

DGfold derived from MS

fragment quantification

Exchange rates in HDX frequently

show biphasic kinetics. The slower

of the two exchange rates has

been correlated with DGfold in

some cases.

(Cieplak-Rotowska

et al., 2018; Masson

et al., 2019)

8 Stability of unpurified

proteins from rates of

hydrogen-deuterium

exchange (SUPREX)

102 Cm
SUPREX derived from

change in mass after

chemical

perturbation

Uses MALDI-MS and reports on

whole protein mass change as a

function of denaturant. Does not

require purification, performed

in lysate.

(Ghaemmaghami

et al., 2000)

9 Stability of proteins from

rates of oxidation (SPROX) +

tandem mass tag (TMT)

multiplexing

103 DGfold (Cm, m value)

calculated from fraction

oxidized inferred from

MS counts after

chemical or thermal

perturbation

Reports on methionine solvent

accessibility: derived parameters

may reflect subglobal stabilities

of localized cooperative unfolding

units encompassing methionine.

Performed in cell lysates.

(Walker et al., 2019,

2008)

10 Thermal proteome

profiling (TPP)

104 Tm & DH derived from MS

fragment quantification

Reports on soluble protein after

thermal incubation.

(Jarzab et al., 2020;

Leuenberger et al., 2017)

11 Pulse proteolysis 101 DGfold (Cm, m value) derived

from estimate of folded

protein after denaturant

exposure and subsequent

proteolysis; kunfold

Usually requires purification

and readout by gel

electrophoresis. Incompatible

with proteins that are degraded

by the protease in the

absence of denaturants.

(Na and Park, 2009;

Park and Marqusee, 2005)

(Continued on next page)
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Table 1. Continued

Method name Scale Returned parameters Notes References

12 Yeast display

proteolysis

105 derived stability score

based on sequenced

gene frequency after

denaturant exposure

and proteolysis

Stability score may not

necessarily relate directly

to thermodynamic stability.

(Rocklin et al., 2017)

Scale is an estimate of the maximum number of variants that can be tested in one experiment. Returned parameters are either directly measured or

derived, using equations cited in the main text. For each method, notes on benefits, limitations, requirements, and scalability are also listed.

Abbreviations used: folding free energy (DGfold); folding enthalpy (DHfold); folding entropy (DSfold); temperature at midpoint of thermal unfolding curve

(Tm); change in heat capacity accompanying folding (DCp); denaturant concentration at midpoint of chemical unfolding curve (Cm); slope of the tran-

sition region of chemical unfolding curve (m value); temperature at midpoint of hydrophobic region exposure curve (Th); radius of gyration (Rg); midpoint

of SUPREX transition curve that depends on the Cm, time of exchange, and exchange rate for the unprotected hydrogen (Cm
SUPREX); rates of protein

folding, depending on the number of state transitions, i (kfold,i, kunfold,i); rate of folding or unfolding reported by dye probe (kobserved).
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fluorophores may perturb protein stability. Ideally, other experi-

ments (i.e., CD and NMR) can be used to confirm that the local

unfolding reported by the intrinsic fluorophore emission directly

correlates with global unfolding. Nevertheless, monitoring

changes in intrinsic fluorescence presents one of the more

accessible and direct techniques to investigate protein folding.

This method is particularly useful for measuring folding kinetics

(i.e., kfold,i and kunfold,i), as it can be used for stopped-flow and

rapid-mixing measurements with smaller sample amounts. To

address the limited scale of these measurements, automatic

titration with microplates has enabled testing of up to 96 proteins

or conditions in parallel (Aucamp et al., 2005). When compared

with CD measurements for equine and bovine cytochrome c,

high-throughput values differed by up to 1.5 kcal/mol (Aucamp

et al., 2005). For 21 protein G (Gb1) variants, high-throughput

measurements correlated with literature values with an R2 of

0.95 (Nisthal et al., 2019). To reduce the amount of sample

needed, this approach has been further miniaturized to a nano-

liter scale for quantification of stability with as few as 108 protein

molecules (Gaudet et al., 2010).

Extrinsic fluorescence using environmentally

sensitive dyes

For proteins that do not have an intrinsic fluorophore, an extrinsic

dye can be used to provide a quantitative measure of unfolding

based on the fluorophore’s differential interactions with solvent

and protein residues (typically, exposed hydrophobic residues).

Common dyes such as ANS or SYPRO Orange (Hawe et al.,

2008) bind and fluorescewhen exposed to hydrophobic residues

of unfolding proteins. DSF can then monitor emitted fluores-

cence of extrinsic dyes as a function of temperature to yield a

transition curve, where the halfway point (Th, or transition tem-

perature of exposure of hydrophobic regions) provides a quanti-

tative measure of protein stability (Pantoliano et al., 2001). Given

that the dye-binding mechanism may differ between proteins,

analysis is largely limited to characterizing Th changes across

conditions or closely related variants, and calculations of DGfold

typically require additional validation of the observed transition

curve. Kinetic unfolding may also be measured with time-

resolved measurements using this method (Biggar et al., 2012),

although measured rates (kobserved) may reflect dye-binding ki-

netics as well as unfolding kinetics.

DSF can be scaled up by using commonly available real-time

polymerase chain reaction (RT-PCR) equipment and extrinsic
552 Cell Systems 12, June 16, 2021
dyes with excitation and emission spectra in the visible wave-

lengths. These measurements report on the relative stability of

related protein variants in the 96-well format (Lavinder et al.,

2009) and agree well with DSC (Goldberg et al., 2011; He

et al., 2010; King et al., 2011). For membrane proteins that may

require detergents incompatible with extrinsic dyes, a variation

of DSF uses a thiol-specific fluorochrome that reports on the

chemical reactivity of buried native cysteines (Alexandrov

et al., 2008). However, there are remaining technical challenges:

some proteins do not show clear thermal unfolding profiles

(possibly due to native interactions with the dye) (Ericsson

et al., 2006), and dyes may perturb the equilibrium on which

they report (Layton and Hellinga, 2010). To address this, new

DSF instrumentation obviates the need for an extrinsic dye by

monitoring intrinsic protein fluorescence transition curves as a

function of temperature (Wen et al., 2020).

Small-angle X-ray scattering (SAXS)

SAXS experiments produce a profile of scattering intensities for

a protein sample in solution, which is related by a Fourier trans-

form to the distribution of pairwise distances between all points

in the protein. The scattering profile can be used to calculate a

radius of gyration (Rg) by using the Guinier approximation and

the maximum pairwise distance (Dmax). Furthermore, ab initio

low-resolution structures can be generated via simulations that

optimize consistency between predicted and experimental pair-

wise distance distributions (Brosey and Tainer, 2019). The SAXS

profile is therefore sensitive to the compactness of the molecule,

as reflected by changes to Rg and Kratky analysis plots,

providing an approximation of folding state. SAXS experiments

have enabled generation of transition curves from both thermal

(Sosnick and Trewhella, 1992) and chemical unfolding experi-

ments (Chen et al., 1996), and combining SAXS with custom

flow cells has enabled microsecond-resolved kinetic folding an-

alyses to return multiple forward folding rates (kfold,i) in a protein

folding pathway (Akiyama et al., 2002; Konuma et al., 2011).

Although SAXS is highly dependent on the quality of sample

preparation and requires access to a sufficiently bright X-ray

source to collect scattering intensities (Skou et al., 2014), it is a

label-free method for obtaining valuable solution-state structural

information about the protein shape and testing model predic-

tions. To improve the throughput of SAXS, upgraded instrumen-

tation has introduced automatic 96-well plate samplers (Hura

et al., 2009) andmicrofluidic chips that use droplets as individual
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microreactors to assess protein interactions related to stability

(Pham et al., 2017; Rodrı́guez-Ruiz et al., 2017).

Mass spectrometry-based methods
The following approaches use different external labeling re-

agents to report on the chemical modification of functional

groups in a protein structure. Prior to maximal labeling, the reac-

tion is quenched and analyzed with MS. The extent of labeling in

the protein can then be used as a proxy for the relative stability of

solvent-protected and solvent-accessible forms, making it

possible to infer local unfolding of secondary and/or tertiary

structure. Thermodynamic properties are then derived by

analyzing the change in labeled populations over a set of time

point measurements or a range of denaturant conditions. If the

protein is fragmented during MS, the labeling properties of indi-

vidual fragments can also be mapped back to the structure for

analysis of local stability impacts.

Hydrogen-deuterium exchange (HDX)/stability of

unpurified proteins from rates of HDX

Hydrogen-deuterium exchange (HDX) can be used to charac-

terize protein stability in vitro by measuring the isotopic

exchange of hydrogen and deuterium between the protein back-

bone and surrounding solvent, which is dependent on the pro-

tein’s folded state and dynamics (Cieplak-Rotowska et al.,

2018; Masson et al., 2019). While HDX can also be characterized

by NMR, MS offers several benefits such as sensitivity to low

sample concentrations (<1 mM), ability to handle large proteins

(>100 kDa), and compatibility with complex sample matrices

(Smith et al., 1997). An approach called stability of unpurified

proteins from rates of HDX (SUPREX) quantifies HDX by MS to

measure stability for up to ~100 proteins in parallel (Ghaemma-

ghami et al., 2000). Cell lysate is exposed to a pulse of D2O in

varying concentrations of chemical denaturant, and the sample

is dried with a MALDI matrix for rapid acquisition. DGfold can

then be determined by characterizing exchange rates as a func-

tion of denaturant concentration or by fitting unfolding models to

exchange rates. While powerful, issues related to back-ex-

change, protein aggregation, or low expression can complicate

analysis of SUPREX results. To obtain thermodynamic parame-

ters, the folding must also be faster than the intrinsic exchange

rate of protons. Despite these challenges, SUPREX is a fast

and sensitive approach that offers the versatility of analyzing

proteins that are either highly purified or in complex biological

mixtures.

Stability of proteins from rates of oxidation (SPROX)

An alternative method to label functional groups that are

exposed in the unfolded state uses hydrogen peroxide, which

preferentially converts methionine to methionine sulfoxide

(Toennies, 1938). Stability of proteins from rates of oxidation

(SPROX) monitors oxidation rates and uses MS to determine

the solvent accessibility of methionine residues as a readout of

stability (West et al., 2008). By limiting modifications to a single

product at a single residue, this approach simplifies peptide

identification and enables measurement of complex biological

samples. Recently, SPROX was used to measure DGfold values

across peptides from over 1,000 proteins in cellular lysate

(Walker et al., 2019). This throughput was achieved using tan-

demmass tag (TMT)multiplexing, which allowsmany denaturant

conditions to be directly compared. However, SPROX cannot be
applied to all proteins, since methionine is the second rarest res-

idue among vertebrates (Lin et al., 2017), and SPROX requires

buried methionine residues to ensure that they are not oxidized

for all conformations. Furthermore, derived parameters may

reflect subglobal stabilities of localized cooperative unfolding

units encompassing the methionine residues. Overall, SPROX

is valuable for characterizing protein stability in complex biolog-

ical samples due to its ease of use and ability to report quantita-

tive physical parameters.

Thermal proteome profiling (TPP)

TPP combines stable isotope labeling with MS to measure pro-

tein solubility and infer stability on a proteome-wide scale. Intact

cells or cell extracts are first exposed to increasing thermal dena-

turation, causing unfolded proteins to aggregate. The soluble

fraction of each sample is digested and analyzed with liquid

chromatography-MS/MS. Finally, the relative concentration of

soluble protein can be used to derive a non-reversible Tm.

Measuring soluble protein as a function of temperature does

not necessarily report thermodynamic parameters, thus compli-

cating physical interpretation of these measurements. However,

TPP enables stability studies in complex biological matrices

without manipulating the target proteins (Leuenberger et al.,

2017). Previous studies have also used TPP to examine prote-

ome-wide impacts on protein stability from chemical perturba-

tions such as drug binding (Savitski et al., 2014). Most recently,

TPP has been applied to compile a ‘‘meltome atlas’’ for 48,000

proteins across 13 species, revealing proteome-wide patterns

of thermal unfolding for organisms adapted to a wide range of

temperatures (Jarzab et al., 2020). Proteome stability was found

to differ in lysates compared with whole cells, raising the possi-

bility that this method may elucidate aspects of thermal unfold-

ing dependent on cellular context.

Gel-electrophoresis-based methods
Pulse proteolysis

Pulse proteolysis measures the extent of protease cleavage as a

proxy for protein stability, based on the expectation that the

unfolded state is more accessible to protease (Park and Marqu-

see, 2005). Proteins are incubated with chemical denaturant until

reaching folding equilibrium, then briefly exposed to protease to

fully digest only the unfolded protein. In-gel densitometry with

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE) is used to quantify ffold as a function of denaturant

concentration, which can then be used to determine both DGfold

and kunfold (Na and Park, 2009). For a set of RNase H and

maltose-binding protein variants, DGfold measurements gener-

ally varied by less than 1 kcal/mol from those determined by

CD (Na and Park, 2009; Park and Marqusee, 2005). Pulse prote-

olysis is compatible with fluorescently labeled proteins produced

via cell-free expression and only requires an SDS-PAGE setup

for analysis, making it easily adoptable by many labs. However,

in the absence of denaturant, the protein of interest must not be

degraded by protease on the timescale of the experiment (mi-

nutes). This caveat renders pulse proteolysis unsuitable for pro-

teins with regions that are particularly susceptible to cleavage.

Additionally, to obtain an accurate readout of protein folding at

equilibrium, kunfold must be slow relative to the pulse time such

that folded proteins are not significantly degraded during the

pulse. While the unfolding kinetics and proteolytic susceptibility
Cell Systems 12, June 16, 2021 553
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of most proteins are unknown, about a third of the soluble ex-

pressed proteins in E. coli are predicted to be compatible with

pulse proteolysis (Park and Marqusee, 2005). Since its develop-

ment, this technique has been applied to determine thermody-

namic stabilities and unfolding kinetics for a variety of proteins

(Jensen et al., 2020; Samelson et al., 2016; Schlebach et al.,

2011). Currently, the most common readout for ffold in pulse pro-

teolysis is SDS-PAGE, limiting the scale to tens of proteins per

experiment.

Next-generation sequencing-based methods
Yeast display proteolysis

Another recent proteolysis-based assay harnesses yeast display

and the multiplexing capacity of DNA sequence to screen li-

braries of small proteins and infer protease susceptibility on a

massive scale. In this method, protein variant libraries are ex-

pressed in yeast such that each cell displays many copies of a

fluorescently tagged protein sequence on its surface. The cells

are then exposed to protease to cleave susceptible proteins,

which results in a loss of cell-associated fluorescence. After

binning the cells into fluorescent and non-fluorescent popula-

tions with FACS, sorted bins are deep sequenced to determine

the frequency of a gene appearing in each bin. Although this

method does not report ffold, sorting and sequencing at multiple

protease concentrations allows calculation of a stability score.

For 116 variants across four protein scaffolds and two proteases,

the stability score correlated with DGfold or Tm with R2 values

ranging from 0.63 to 0.85, depending on the scaffold and prote-

ase used (Rocklin et al., 2017). Future efforts could use directly

measured DGfold values to interpolate critical thermodynamic

constants in high throughput.

DISCUSSION AND FUTURE DIRECTIONS

Advancing existing technologies
The quantitative technologies described in this review provide

the physical constants necessary to describe how changes in

sequence alter stability. However, the need to express and pu-

rify large numbers of variants remains a significant technical

barrier to generating data at the scale needed to test and

improve physical models of protein folding. Several recent ap-

proaches have shown promise for improving this workflow.

For instance, coupling automated site-directed mutagenesis

with plate-based intrinsic fluorescence measurements enabled

stability determination for 935 variants (Nisthal et al., 2019). To

reduce the need for protein purification, other plate-based as-

says have been developed to introduce thermal denaturation

and monitor changes in either intrinsic fluorescence from cell ly-

sates containing overexpressed enzymes (Magnusson et al.,

2019) or fluorescence intensities for cells containing GFP-

tagged protein variants (Moreau et al., 2012; Sorenson and

Schaeffer, 2020).

Two recently introduced platforms—STAMMP (Aditham et al.,

2021) and HT-MEK (Markin et al., 2020) —leverage microfluidic

devices containing >1,500 valved reaction chambers to allow

for parallel on-chip expression and purification of fluorescently

labeled proteins. After expression, proteins can be recruited to

device surfaces beneath pneumatic valves, which protect sur-

face-immobilized proteins from shear flows during reagent
554 Cell Systems 12, June 16, 2021
exchange. By combining the ability to test multiple denaturing

conditions (e.g., temperature, addition of chaotropes during

and after expression) with systematic measurement of molecular

function for thousands of unique sequences, such technologies

provide a novel high-throughput method for quantifying the de-

gree to which amino acid substitutions destabilize folded confor-

mations or alter folding pathways (Markin et al., 2020).

Building new technologies
Over the past decade, advances in next-generation sequencing

and MS have enabled a variety of high-throughput biochemical

measurements. Adapting stability measurements to these read-

outs requires theability toperturb the foldedstate (e.g., via temper-

ature or denaturant) and detect changes in accessibility (e.g., via

cleavage or the addition of a chemical modification). These

changes can then be selected for via FACS, pull-down assays,

or chromatography and quantified in high throughput using either

MS (if masses are unique and identifiable) or sequencing (if geno-

type can be linked to phenotype). Several promising strategies link

a protein to its corresponding genetic information, including cell-

surface expression (Rocklin et al., 2017), droplet encapsulation

(Brower et al., 2020), mRNA display (Roberts and Szostak,

1997), and ribosome display (Hanes and Pl€uckthun, 1997).

Combining data across platforms
As new technologies generate more stability data, there is a rising

need to systematically combine data across different methods,

experiments, and conditions. Three databases—FireProtDB

(Stourac et al., 2021), ProtaBank (Wang et al., 2018a, 2018b),

and ProTherm (Gromiha et al., 1999)—have been created to

collect, organize, and validate stability data from the literature.

This growing collection of data also underscores the importance

of establishing best practices for performing and reporting stabil-

ity measurements, as has been pioneered for other types of com-

plex data from diverse sources (Conesa et al., 2016; Jarmoskaite

et al., 2020). High-throughput techniques provide high-resolution

estimates of relative energetic differences between constructs in a

single experiment (e.g.,DDGfold) but typically do not provide abso-

lute estimates (e.g.,DGfold). Using lower-throughput techniques to

derive absolute energetic estimates for a subset of constructs

and/or including reference materials, as is common in RNA

sequencing experiments (Krusche et al., 2019; Zook et al.,

2019), could allow inference of accurate stability parameters

from relative measurements. Ultimately, integrating both large-

scale and small-scale measurements will be critical to test and

refine physically motivated models of protein stability.

Building biological understanding
How can large stability datasets help us develop a deeper under-

standing of biology? The majority of human gene variants are of

unknown significance (Cordero and Ashley, 2012; Cusin et al.,

2018; Kroncke et al., 2015; Nishizaki and Boyle, 2017). Directly

measuring how human disease variants deposited in databases

such as ClinVar, TCGA, cBioPortal, and PharmGKB alter stability

can therefore immediately help identify likely pathogenic variants

and inform the development of therapeutics to target destabi-

lized protein regions.

Beyond precision medicine, metagenomic sequencing efforts

have yielded millions of protein sequences with potential novel



Figure 3. Protein stability is foundational to
protein function and cellular context
Protein stability (left) can be quantified as the dif-
ference in free energy between the folded and
unfolded states (the folding free energy, DGfold). In a
single protein, the folding kinetics may be governed
by multiple folding rates (kfold,i) and unfolding rates
(kunfold,i), depending on the number of state transi-
tions, i. Stability is crucial to function (middle), with
multiple additional parameters required to describe
binding (including on rates (kon), off rates (koff), and
dissociation constants (Kd)) and catalysis (including,
for example, Michaelis constants for multiple sub-
strates (kcat, KM) and/or inhibition constants (Ki) for
various inhibitors). In the context of a cell (right), a
wide variety of parameters dictate stability, binding,
catalysis, and flux (including concentrations of
enzyme ([E]), substrate ([S]), product ([P]), and in-
hibitor ([I])).
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functions and properties, but <1% have been functionally char-

acterized (Galperin and Koonin, 2010; Harrington et al., 2007;

Popovic et al., 2017). Mapping stabilities across this vast

sequence space provides an opportunity to explore how

constraints of protein physical architecture intersect with evolu-

tionary processes (Harms and Thornton, 2013) and to under-

stand how molecules adapt to the selective pressures imposed

by changing environmental conditions such as temperature (Pin-

ney et al., 2021). By exploring the diversity of not only extant se-

quences but also reconstructed sequences with advantageous

properties, we can additionally learn from the past to inform

the design of future proteins (Gumulya and Gillam, 2017). Pro-

teins with enhanced stability have applications in medicine (as

therapeutics that are less prone to unfolding and aggregation

during storage and administration; Chennamsetty et al., 2009;

Lazar et al., 2003) and industry (as a starting point to introduce

destabilizing mutations that improve enzyme activity but pre-

serve the folded structure; Chen and Arnold, 1993).

AlphaFold’s recent success in predicting low-energy folds

foreshadows the next big step in understanding proteins: ex-

panding beyond two-state approximations to account for

conformational ensembles and even broader conformational

landscapes. Particularly promising techniques for observing

broad conformational ensembles include room-temperature X-

ray crystallography (Fraser et al., 2011; Yabukarski et al.,

2020), X-ray free-electron lasers (Johansson et al., 2017; Edito-

rial, 2020), and cryo-electron microscopy (Shoemaker and

Ando, 2018). Although limited in scale, these measurements

and analyses offer deep insight into the heterogeneity of confor-

mational landscapes without requiring perturbations.

Protein stability measurements spanning sequence and con-

ditions are foundational to understanding protein function in

the cellular context (Figure 3). Describing function adds yet

another layer of complexity given the larger space of sequence

and parameters that must be searched and experimentally

probed. On the cellular level, folded proteins must balance the

competing demands of being sufficiently stable to fold and func-
tion while still allowing regulatory control

via degradation and recycling, raising the

challenge of probing how proteins respond

to these competing demands. Ultimately,
systematic and quantitative data on protein stability is essential

to anchor physics-based (Atilgan et al., 2010; Balakrishnan et al.,

2011; Brooks and Karplus, 1985; Doshi et al., 2016; Jiménez-

Osés et al., 2014; Levitt et al., 1985; Osuna et al., 2015; Post

et al., 1989; van der Kamp and Mulholland, 2013; Warshel,

2003), statistical (Halabi et al., 2009; Hopf et al., 2017; Lee

et al., 2008; Lockless and Ranganathan, 1999; Marks et al.,

2011; Morcos et al., 2011; Narayanan et al., 2017; Reynolds

et al., 2011; Riesselman et al., 2018; Rivoire et al., 2016; Stein

et al., 2015), and deep learning computational models (AlQur-

aishi, 2018; Hou et al., 2018; Senior et al., 2020; Wang et al.,

2018a, 2018b). As we have seen with the development of highly

accurate weather forecasting, generating large and comprehen-

sive physical datasets to describe current observations is a

necessary first step. However, there is far more to predicting

complex systems than simply mapping what conditions have

already been observed—we must develop a deep and physical

understanding of how perturbations to a system will alter

behavior. High-throughput stability experiments will expedite

the feedback loops between measurements and models to

eventually reach a predictive understanding of how protein

sequence is linked to stability and function.
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