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Droplet generation is a fundamental component of droplet microfluidics, compartmentalizing biological or

chemical systems within a water-in-oil emulsion. As adoption of droplet microfluidics expands beyond

expert labs or integrated devices, quality metrics are needed to contextualize the performance capabilities,

improving the reproducibility and efficiency of operation. Here, we present two quality metrics for droplet

generation: performance versatility, the operating range of a single device, and stability, the distance of a

single operating point from a regime change. Both metrics were characterized in silico and validated

experimentally using machine learning and rapid prototyping. These metrics were integrated into a design

automation workflow, DAFD 2.0, which provides users with droplet generators of a desired performance

that are versatile or flow stable. Versatile droplet generators with stable operating points accelerate the

development of sophisticated devices by facilitating integration of other microfluidic components and

improving the accuracy of design automation tools.

Introduction

Droplet microfluidics is a core aspect of many high-
throughput platforms in biotechnology, including functional
antibody discovery, drug screening, metabolic pathway
optimization, and single-cell genomics.1–4 Typically, resource
and time-intensive design iterations are necessary to achieve
a desired performance, specifically when using poorly
characterized biological samples5–7 or multiple component
devices (e.g., generators, sorters, mergers).8–10 Knowledge
from previously successful implementation needs to be
captured through standardized designs, well-annotated
fabrication protocols, automated computer-aided design
tools, and quality metrics to reduce the need for design
iterations and make the design process more robust.11,12

Quality metrics provide essential insight into system
performance (e.g., sensitivity and specificity of a diagnostic,
sampling rate of an integrated circuit, or fuel economy of a
car). Quality metrics for key microfluidic components are

needed as small errors from bespoke device design,
fabrication, and operation can accumulate between
researchers, resulting in large performance deviations across
different groups.13 Adoption of these metrics in microfluidic
devices would improve the ease of implementation by non-
experts, reduce batch variability, and provide important
context on their stable and feasible performance range.

In droplet generation, the droplet size and generation rate
are dictated by the geometric design of the device, flow
conditions, fluid properties, and surface chemistry.14,15

Monodisperse droplet generation at a single size and rate is
essential for integration with other components and for
encapsulation of cells, beads, or other reagents. T-junction, co-
flow, flow-focusing, and step-emulsification geometries
alongside pressure-driven or flow-rate-driven fluidic systems
are commonly used for droplet generation with varying degrees
of performance range (droplet sizes and generation rates) and
parameter sensitivity.16–18 Flow-focusing devices can deliver a
wide range of diameters and generation rates while
maintaining high droplet monodispersity, often making them
more desirable in comparison to other geometries.16,19

Flow-focusing geometries are traditionally designed by
choosing an orifice width close to the desired droplet
diameter. However, experimental evidence suggests that other
design parameters including channel depth, oil inlet width,
water inlet width, and outlet channel width play a significant
role in determining the characteristics of droplet
generation.20,21 This design strategy arises from the complex
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fluid velocity fields and large design space in flow-focusing
geometries, which prevents the introduction of generalizable
and accurate scaling laws.

To this end, machine learning-based design automation
tools have been introduced for flow-focusing droplet
generators that suggest a design that delivers a user-
specified diameter and generation rate.22 However,
microfluidic design automation tools have primarily focused
on predicting performance as accurately as possible, taking
little to no account for the performance range, stability of
the operating point, and the difficulties in fabricating or
operating the device.12

Here, we define versatility and stability, two quality
metrics that streamline flow-focusing droplet generator
design and operation. Versatile devices are ideal for on-chip
component integration, resource-constrained settings, novice
microfluidic operators, or early-stage discovery, where
surveying a wide range of droplet sizes and generation rates
is needed (Fig. 1a). The broader operating range of these
devices can also facilitate the integration of droplet
generators with other microfluidic components. Stable
droplet generators can be used to ensure that the operating
point of the device is not near a regime change boundary
(e.g., from dripping to jetting) (Fig. 1b). These designs
improve the robustness of droplet generation by avoiding
large jumps in the observed performance from a regime

change caused by small errors in fabrication, operation, or
predictive models.

To characterize the effect of device geometry on these
metrics, we capitalized on a previously developed machine
learning tool, DAFD,22 to fully simulate the droplet generator
design space. We established the influence of each parameter
on versatility and stability with main effect analysis. Select
devices were fabricated and used to experimentally validate
each metric. Next, both metrics were integrated into the
design automation algorithm to create quality metric-driven
design automation of flow-focusing droplet generators, DAFD
2.0 (Fig. 1c). These metrics can be implemented to tailor the
performance range of a device, improve the robustness of
operation, or simplify the development of multi-component
microfluidic devices (Fig. 1d).

Results
Rapid modeling of droplet generation

To determine if geometric parameters of a flow-focuser other
than orifice width impact droplet generation, we analyzed
previously published experimental data from 5 orthogonal
flow-focusing devices with different design parameters while
keeping the same orifice width (Table S1†).21 These devices
were tested at the same range of capillary number (0.066–
1.06) and flow rate ratio (10–22) and their observed diameters

Fig. 1 Versatility and stability are established and characterized as new quality metrics for flow-focusing droplet generators. (a.) Size, rate, and
total versatility are defined using the droplet diameter range, generation rate range, and the convex hull of observed performance while testing
the device over the flow condition design space, respectively. (b.) Stability is defined as the 2-D Euclidean distance of oil and water flow rates from
a specified point to a regime change boundary. (c.) These quality metrics were integrated into the DAFD design automation workflow to develop
the next generation of the online tool that can achieve user-specified performance while maximizing desired quality metrics. (d.) Versatility and
stability metrics can be used in applications such as tailoring the performance range of a device, improving the robustness of droplet generation,
or simplifying multicomponent microfluidic development, such as a double emulsion generator.
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and generation rates were used to compare their performance
range. Capillary number and flow rate ratio were used as
dimensionless representations of flow rates to maintain the
generalizability of our findings to a broader range of channel
dimensions. As shown in Fig. 2, the performance of these
devices varied significantly despite having the same orifice
width. Interestingly, some devices produced a broader range
of droplet diameters or generation rates than others. Next, to
establish the accuracy of previously validated neural networks
in predicting the performance of aqueous-in-oil droplet
generation,22 we predicted the droplet diameters and
generation rates of the 5 orthogonal devices at the same
range of capillary numbers and flow rate ratios. The neural
network models closely recapitulated experimental
observations (Fig. 2).

To guide experimental design and characterize the effect
of device geometry on versatility and stability, we simulated
the droplet generator performance space using these
predictive models. This newly generated dataset had 4.2
million entries with an approximately equal representation in
both dripping and jetting regimes (45% dripping and 55%
jetting). The full-factorial parameter space and range details
of the dataset are given in Table 1. The distribution of the
predicted droplet diameters and generation rates are shown
in Fig. S1.†

Versatility

Versatile droplet generators can produce a broad range of
diameters and generation rates for a given range of capillary
numbers and flow rate ratios. For each design, we used the
predicted performance range for all flow conditions (Table 1)
to establish three performance metrics: size versatility, the
total range of observed droplet diameters; rate versatility, the
total range of observed generation rates; and total versatility,
the convex hull area of the observed diameters and
generation rates (Fig. 1a). The same definitions were also
used for analyzing regime-specific performance versatility in
both dripping and jetting regimes, where data points were

grouped according to their predicted regime and analyzed
separately. A wide range of versatility scores was observed in
both generation regimes (Fig. S2†), suggesting that the design
parameters of a droplet generator affect its versatility.

Main effect analysis. To characterize the effect of each
geometric parameter on versatility, we performed main effect
analysis on the size, rate, and total versatility metric scores
separately for data points in dripping, jetting, and both
regimes.23 The total versatility scores spanned 4 orders of
magnitude across all devices, with the majority of designs
having relatively low scores (Fig. 3a). Geometric parameters,
therefore, determine the total versatility (Fig. 3b), as well as
diameter and rate versatility as given in Fig. S3 and S4.†
These results indicate that optimization of geometric
parameters is necessary to achieve a versatile device.

In the dripping regime, increasing the orifice length
increased total versatility, likely because longer orifices delay
the regime change from dripping to jetting to a higher
capillary number.21 Increasing the normalized channel depth
significantly reduced total versatility, potentially because
deeper channels limit the maximum possible generation rate
and cause the regime transition from dripping to jetting to
occur at lower capillary numbers.21 Orifice width, normalized
oil inlet, and outlet widths had only minor effects on total
versatility, while normalized water inlet width had a
negligible effect. The effects of all geometric parameters on
diameter, rate, and total versatility are established and
provided in Fig. S3 and S4† and are quantified using the
coefficient of determination (R2) in Tables S2 and S3.† These
results suggest that normalized channel depth and orifice
size can be changed to generate droplets with a large range
of diameters and a small range of generation rates, or vice
versa. In contrast, normalized oil inlet width and normalized
orifice length can tune size versatility or rate versatility
without affecting the other, respectively.

In the jetting regime, geometric parameters also
significantly affected versatility despite having notably
different dynamics compared to the dripping regime,24 as
shown in Fig. S4.† Increasing normalized water inlet and

Fig. 2 (a.) To understand the effect of geometric parameters other than orifice width on droplet generation, five devices were designed with a 75
μm wide orifice and orthogonal other geometric parameters. (b.) Taking data under the same flow conditions from a previous publication,21

drastically different performance ranges are observed from these orthogonal devices, indicating that design parameters other than orifice width
influence behavior. (c.) These results can be accurately recapitulated with a machine learning-based predictive model.
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outlet widths resulted in a notable decrease in total
versatility. In contrast, increasing normalized oil inlet width
produced a notable increase in total versatility. The influence
of these parameters on versatility is likely from the resultant
change in oil flow rate (for a given capillary number) and
fluid acceleration through the orifice, both of which dictate
droplet generation rate. This is supported by the high
correlation between total versatility and generation rate
versatility in the jetting regime (Fig. S4†). Medium orifice
widths yielded slightly higher total versatility scores in
comparison to the extremes, which can be attributed to the
smaller orifices delivering a broader range of generation
rates, while larger orifices deliver a wider range of diameters.
Normalized channel depth and orifice length were observed
to have a negligible effect on total versatility in the jetting
regime. These results indicate that the design of microfluidic
droplet generators can be tailored to meet user requirements
in delivering a versatile performance, or delivering a wide
range of generation rates while only producing a narrow
range of diameters or vice versa.

Experimental validation. To experimentally validate the
versatility quality metric, the design parameters that led to
the highest and lowest mean versatility in the dripping
regime (according to the main effect analysis) were used to
design two flow-focusing droplet generators (see Table S1†).
The two devices were fabricated and tested at the capillary
number and flow rate ratio combinations at the edge of the
convex hull of the simulations. If the observed droplet
generation regime was in the jetting regime, the capillary
number (i.e., oil flow rate) was reduced until droplet
generation reached the dripping regime. Excitingly, the
experimentally observed performance range between the two
devices was notably different, with approximately a 4-fold
difference in total versatility scores (Fig. 3c–f). The more
versatile device delivered a droplet diameter in the range of
27.1 to 77.2 μm and rates of 67 to 515.9 Hz. In contrast, the
less versatile device generated droplets 114.3 to 329.5 μm in
diameter and rates between 9 to 36.4 Hz. The observed
difference for these designs results partly from a delayed
regime change from dripping to jetting while increasing the
capillary number, thus enabling droplet generation at higher

capillary numbers and therefore higher generation rates.
Despite this larger capillary number range, the range of flow
rates in the more versatile device was significantly smaller
than the less versatile device. The smaller flow rate range
indicates that versatility stems from the geometric
parameters of the device and not just the range of flow rates
that result in dripping droplet formation (Fig. 3d).
Additionally, the smaller water and oil inlet widths of the
versatile design suggest that geometries that further
accelerate the fluid at the orifice result in a higher generation
rate for a given flow rate. The small deviation of the
predictive models from experimental data is expected given
the small errors in our models for performance prediction
and regime classification.22 Nonetheless, the main versatility
characteristics are upheld (Fig. 3c, right three panels),
instilling confidence that our models are capturing the high-
level behavior of the device.

To demonstrate the utility of the versatility metric in
practice, we fabricated two devices capable of producing 100
μm diameter droplets at 100 Hz with predicted performances
such that the versatile device's performance range completely
encompassed that of the less versatile device (Fig. 4; see
Table S1† for design parameters). As predicted, the versatile
device had a significantly higher versatility compared to the
less versatile device and encompassed 98.2% of its
deliverable performance area, while the less versatile design
only encompassed 49.2% of the deliverable performance area
of the more versatile design (Fig. 4). The more versatile
device could operate in the dripping regime within a wider
range of flow rates; nonetheless, limiting the observed
performance to similar flow rates (i.e., same as the less
versatile device) still resulted in a much larger performance
range in the more versatile device (Fig. S5†).

Stability

During droplet generation, different fluidic regimes occur
depending on the device geometry and flow rates of the
operating point. A previously validated machine learning
model was used to predict the generation regime for the 4.2
million data points.22 These data points were then labeled to

Table 1 Range of design parameters, flow conditions, and the number of variations used in this study

Parameters Range

Name Unit Lower bound Upper bound Number of variations

Geometry 28 125
Orifice width μm 75 175 5
Normalizeda orifice length N.A. 1 3 5
Normalizeda water inlet width N.A. 2 4 5
Normalizeda oil inlet width N.A. 2 4 5
Normalizeda channel depth N.A. 1 3 5
Normalizeda outlet width N.A. 2 6 9
Flow condition 150
Flow rate ratiob N.A. 2 22 10
Capillary number N.A. 0.05 1.05 15

a Parameters were normalized by dividing their value by the orifice width. b Ratio of oil flow rate to water flow rate.
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be a regime boundary or not. A regime boundary was
assigned if an adjacent point (± one step in flow rate ratio or
capillary number) had a different predicted regime. Then, a
“stability score” was assigned to each point as the Euclidean
distance in flow rate values to a boundary point. Points on
the boundary line were assigned a score of zero (see
Methods, stability scoring for more detail).

For a given device geometry, a change in the capillary
number or flow rate ratio would result in a 1-to-1 ratio
change in oil flow rate or water flow rate according to eqn
(2). Therefore, for a given device geometry, using either flow
rates or capillary number and flow rate ratio would result in
the same relative Euclidean distance. Additionally, since

operating errors typically occur in units of flow rates (e.g., ±1
μL per hour), the Euclidean distance in flow rates was used
instead of capillary number and flow rate ratio to develop an
unbiased quality metric for different devices operating at
either high or low flow rates.

Main effect analysis. Within the created dataset, a wide
range of stability scores that spanned an order of magnitude
was calculated (Fig. S6†). The majority of data points were
observed to have a relatively low stability score, further
emphasizing the need to characterize and optimize stability.
Main effect analysis was performed on the stability scores of
the 4.2 million data points to estimate the geometric design
parameters that had the most influence over stability.

Fig. 3 The geometric parameters of a flow-focusing device can be adjusted to tune device versatility. (a.) The versatility score of a large-scale
simulated dataset was calculated (28 125 devices) to produce a wide range of scores. (b.) Main effect analysis is used to quantify the effect of
variations in geometric parameters on performance versatility for both dripping and jetting regimes. The effect of geometric parameters on the
total versatility (the convex hull area of possible droplet diameters and rates) for the dripping regime is shown. The effect of geometric parameters
on droplet diameter versatility, generation rate versatility, and total versatility in both regimes are provided in Fig. S3 and S4.† The coefficient of
determination (R2) values for all parameters are provided in Tables S2 and S3.† (c.) Based on the main effect analysis, two droplet generators were
designed using the parameters that resulted in the highest or lowest versatility. The performance of these devices was tested experimentally and
predicted within the dripping regime and was shown to behave as expected both experimentally and in silico. (d.) The more versatile device
exhibited a larger deliverable performance space in the dripping regime with a smaller range of flow rates. (e. and f.) Images of experimental
results. Scale bars are 100 μm.
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In the dripping regime, increasing capillary number
caused the largest decrease in stability values (Fig. 5a). This
is expected, as the regime transition from dripping to
jetting occurs as the capillary number increases. Increasing
orifice size increased the stability score; this may be
attributed to a reduced flow acceleration through larger
orifices for a given change in flow rates that delays the
regime change from dripping to jetting. Similar to orifice
width, it is expected that larger normalized channel depths
(i.e., deeper channels) increase stability by reducing flow
acceleration through the orifice. However, larger normalized
depths also facilitate regime change from dripping to jetting
at lower capillary numbers. Therefore, normalized depth
minimally affects stability overall. A negligible effect on
dripping regime stability was observed in other design
parameters.

In the jetting regime, an inverse effect of capillary
number on stability was observed, as the chance of a
regime boundary (i.e., a transition from jetting to
dripping) decreases drastically as capillary number
increases (see Fig. S7†). Increasing orifice width,
normalized depth, and oil inlets increased stability in the
jetting regime. This can be attributed both to a lower
sensitivity to changes in flow rates due to a smaller flow
acceleration at the orifice and to the positive correlation
of these parameters with oil flow rate for a given capillary
number and flow ratio.

Experimental validation. The stability metric was
experimentally validated by fabricating two devices with
design parameters that resulted in the highest and lowest
average stability scores in the dripping regime according to
the main effect analysis shown in Fig. 5a (see Table S1† for
design parameters). Between capillary numbers of 0.05 and
0.27 and flow rate ratios of 2 and 22, predictions for each
device showed a much larger dripping performance space in
the more stable device (206 out of 230 points; see
Fig. 5b, left) compared to the less stable device (29 out of
230 points; see Fig. 5c, left). Experimentally, the regime
boundary was found by increasing the capillary number and
flow rate ratio until a regime change was observed. As
predicted, experimental regime boundaries showed a similar
difference; although the regime boundary was not exactly
the same, the dripping performance space of the more
stable device was much larger (167 out of 230 points;
Fig. 5b, right) compared to the less stable device (47 out of
230 points; Fig. 5c, right).

This discrepancy between experimental and simulated
data is to be expected: the architecture of our predictive tool
utilizes separate models for each regime, and therefore
datapoints on the regime boundary are at the edge of the
training set distribution. Furthermore, experimental data
close to the regime boundary are inherently unstable, with
droplet generation regularly changing between each regime
due to small changes in flow rates, device fabrication,
surface properties, or operation. Therefore, we would expect
some discrepancy between the simulated and experimental
data around the regime change boundary. For instance, the
more stable device and less stable device were predicted to
deliver similar performance at a capillary number of 0.05
and flow rate ratio of 15.3 (103 μm size, 45 Hz rate for the
less stable device, 110 μm size, 38 Hz rate for the more
stable device). When running these devices experimentally,
a generation rate of 42 Hz is observed for both devices,
however, a droplet size of 63.6 μm (38% experimental error)
is observed for the less stable device, while the more stable
device delivered a diameter of 92.57 μm (16.1%
experimental error), as shown in Fig. 5d. This discrepancy
is therefore mitigated by the introduction of a stability
metric: by generating stable points, the user can be assured
that the datapoint is far away from the regime boundary
and thus errors from fabrication, testing, or predictive
models are limited.

Fig. 4 Direct comparison of versatile and non-versatile droplet
generators. (a.) Two droplet generators capable of generating 100 μm
diameter droplets at 100 Hz but drastically different versatility scores
in the dripping regime and device geometry were manually selected.
(b.) The predicted performance range of the more versatile design fully
encompassed the deliverable performance range of the less versatile
design. (c.) The more versatile design delivered an experimentally
observed performance convex hull area approximately two times
larger than the less versatile design while almost completely
encompassing its performance space in the dripping regime. (d. and e.)
Images of experimental results.
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Design automation integration

To facilitate the utility of quality metrics in the microfluidics
community, both versatility and stability were implemented
in a new design automation algorithm to develop DAFD
2.0.22 In the previous version, DAFD automated droplet
generator design by picking the closest experimental point in
the dataset and then making adjustments to the design
parameters, iterating until the difference between the
specified and predicted performance is within a set threshold
(Fig. 6a). In DAFD 2.0, a user-specified number of closest
points are selected and optimized in parallel to produce
multiple candidate results (Fig. 6b). The closest points are
ignored before optimization if they have the same geometric
features as those already chosen. Optimized points are scored
by versatility or stability and then ranked according to the
user-specified quality metric. Thus, the resulting point would
have both the desired behavior and a contextual
understanding of its versatility or stability. If a user would
like to optimize by both versatility and stability, we
recommend that the user first optimize by versatility to get a
specific device with a broad operating range, and then
optimize by stability, fully constraining the design
automation algorithm to the previous solution's geometric
design parameters. This would then give the user an output
with both high versatility and stability. A companion report is
generated to report different metric scores and visualize the
user's device information on its deliverable diameter and

generation range in each regime and the operating regime of
the device based on its capillary number and flow rate ratio
(Fig. S8†). An additional sensitivity analysis (which would
evaluate the changes in droplet size or generation rate as any
of the input parameters are changed) can be generated by the
user via a previously developed “Tolerance Test.”22

The efficacy of design automation with quality metrics
was validated by comparing design automation results for
100 μm diameter droplets generated at 150 Hz in the
dripping regime. Two solutions were generated by using
either traditional design automation or design automation
with quality metrics. Both solutions had a predicted
performance within 1 μm or 1 Hz of the specified droplet size
and rate, respectively (Fig. 6ai and bi). In DAFD 2.0, the same
device ranked highest in both overall versatility and stability
scores. The quality-metric driven solution had a predicted
versatility of 24 796, 40% higher than the default solution
(see Fig. 6aii and bii), as well as approximately a 6-fold higher
stability score (0.71 for the ranked device, 0.13 for the
original solution).

A regime change can cause a significant change in the
observed performance, as shown in Fig. 6aii and bii,
demonstrating the importance of the stability metric to
improve the robustness of droplet generation against small
perturbations in fabrication and testing. Quality metric
integration can play an important role in improving the
accuracy and reproducibility of microfluidic design
automation while increasing the understanding and

Fig. 5 The design parameters of a flow-focusing device can be adjusted to tune its stability. (a.) Main effect analysis is used on 4.2 million data
points to quantify the effect of variations of geometric and flow parameters on stability. The effect of parameters on stability for just the dripping
regime is shown here, and the effect of design parameters in the jetting regime is provided in Fig. S7.† The coefficient of determination (R2) values
for all parameters are provided in Table S2.† To validate the findings on stability based on the main effect analysis, two droplet generators were
designed using the geometric parameters that resulted in (b.) the highest or (c.) lowest stability. (b.–d.) The performance of these devices was both
tested experimentally and predicted for the dripping regime and was shown to behave as expected both experimentally and in silico.
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accessibility of microfluidics to the broader research
community. DAFD 2.0 is freely available to users at http://
dafdcad.org and the source code can be found at https://
github.com/CIDARLAB/DAFD_Metrics.

Discussion

In this study, we introduced versatility and stability, two
quality metrics for microfluidic flow-focusing droplet
generators. Operating points with a high stability score are

far away from a fluidic regime change (e.g., from dripping to
jetting) and therefore are more robust to performance errors
from small fabrication or flow-based errors as well as
inaccuracies in predictive models. Stable operating points
can be particularly helpful for multi-component devices,
where droplet size and generation rate are less affected by
pressure fluctuations or the required operating conditions of
other components.8 Versatile droplet generators are capable
of delivering a wider range of diameters and generation rates
for a given range of flow conditions. Versatile designs could

Fig. 6 The newly established quality metrics were integrated into the DAFD design automation tool to deliver the desired droplet size and rate
while maximizing the user-specified quality metric. (ai.) Previously, a user would specify a desired performance, and design automation would start
by selecting the closest experimental point (i.e., diameter and rate) in the dataset and iteratively optimizing the design parameters until the desired
performance was achieved. (aii.) This approach can generate designs that have a narrow range of diameters and rates that are less ideal for
integration with other microfluidic components or operate close to a regime boundary, making it susceptible to large changes in performance
from small errors. (bi.) In the newly developed metric-driven design automation tool (i.e., DAFD 2.0), the “top-k” closest data points are selected
from the dataset, simultaneously optimized to achieve the desired performance, and then ranked according to the user-specified quality metric
(i.e., performance versatility or stability). (bii.) The candidate with the highest quality metric is then selected, producing a desired behavior with
maximized quality metric. While inputting the same performance of 150 μm droplets at 100 Hz into DAFD and specifying versatility and stability as
quality metrics, the suggested design was observed to deliver a broader range of possible performance. The suggested design and operating point
were also farther away from the boundary of regime change, thus making it more robust against small errors in fabrication and testing.
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be used for rapid data generation, minimizing the number of
devices needed to explore the output space and reducing
time and cost requirements. For example, the same
performance space that was previously mapped with 25
orthogonal devices21 can be mapped with only 5 versatile
devices with more than 99% coverage, a substantial reduction
in the number of devices that have to be fabricated and
tested (Fig. S9†). While helpful, manual analysis of quality
metrics can be time-consuming and require significant
expertise to understand what parameters can be changed to
improve each metric while adhering to the desired droplet
size and rate. To this end, versatility and stability were
integrated into the DAFD design automation software to
generate device designs that can both deliver user-specified
performance as well as maximizing versatility or stability.

These metrics can facilitate the integration of droplet
generators with other microfluidic components, selecting
for large overlaps in their operating range or high
stability, reducing the need for multiple devices to achieve
different droplet properties. Double emulsion generation is
one application where versatility and stability can be used
in tandem to optimize performance.25 In double emulsion
generation, matching the generation rates at the two flow-
focuser junctions is essential for producing single-core
double emulsions.4,26 Minimizing size differences between
the inner and outer emulsion (i.e., oil shell thickness) can
also be essential if double emulsions are going to be
processed in a size-restricted system such as a commercial
FACS machine.25 High size versatility and low rate
versatility in both of the linked droplet generators would
enable the generation of different inner and outer
diameters while limiting changes in generation rates that
make unwanted products (e.g. multiple or no cores). High
stability in performance would avoid failure modes
stemming from a regime change in either of the two
flow-focusing droplet generators.

Although these metrics are created and validated with a
droplet generation dataset with DI water and mineral oil in a
polycarbonate device, transfer learning could be used to
expand DAFD and the developed metrics to other fluids and
fabrication methods such as cell media, fluorinated oils, and
PDMS. In transfer learning, a small-scale dataset is used to
tune an existing model previously generated on a larger
dataset. The overall fluid dynamics of droplet generation are
expected to be similar even when different fluids are used,
therefore, leveraging geometry to improve versatility and
stability is also expected to hold true for different fluids.

To this end, we evaluated the versatility and stability of
the devices used in Fig. 4 and 5 with a different fluid
combination, switching out DI water for lysogeny broth (LB)
bacterial cell media, which is 80% more viscous than DI
water (1.8 mPa s).27 In the versatile and less versatile devices,
a marked difference in dripping versatility was observed,
despite a reduction in versatility in both cases compared to
DI water and mineral oil (Fig. 7a). A cause of this versatility
reduction was observed in the stability devices: in both cases,
a significant shift to lower capillary numbers was observed in
the regime change boundary. Despite this shift, the more
stable device exhibited a larger number of fluid conditions in
the dripping regime than the less stable device (Fig. 7b).

These results suggest both versatility and stability can be
generalized to other fluid combinations; however, as the fluid
combinations begin to differ more significantly from DI
water and mineral oil, we anticipate the conservation of such
properties within the same geometric designs to be limited.
Additional machine learning models capable of predicting
performance and regime change across fluid combinations
are needed. Machine learning has been used to extend these
predictive models to fluids commonly used in life science
applications in a fluid-agnostic manner, broadening the
resource of droplet generator design automation across the
microfluidic community.26 Currently, such models are unable

Fig. 7 Generalization of versatility and stability to novel fluid combinations (LB media and mineral oil). (a.) Using the droplet generators from
Fig. 4, differences in versatility were still apparent between the more and less versatile devices. (b.) With the droplet generators from Fig. 5, a
marked shift in regime change boundary was observed in both devices. However, relative stability in the dripping regime between the more and
less stable devices.
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to predict regime changes in different fluid types, limiting
the adoption of the presented quality metrics.

By combining machine learning,12 device
standardization,10 and both rapid and high-resolution
fabrication techniques,28–34 metric-driven microfluidic design
automation can be applied across fluid combinations and
droplet microfluidic component libraries and play an
important role in reducing the barrier to adoption in
microfluidics.

Conclusions

The development of versatility and stability quality metrics
was made possible by leveraging large-scale predictions using
machine learning-based models for flow-focusing droplet
generators. These metrics were also experimentally validated
by fabricating and testing devices with high and low
versatility and stability scores. The quality metric-driven
devices were demonstrated to significantly improve versatility
and stability when compared to traditionally designed
devices. The use of both quality metrics by the broader
community was made available through integration with an
open-source and online design automation tool, DAFD, which
now generates user-specified performance while also
optimizing for stability or versatility. To our knowledge, this
is the first integration of quality metrics in droplet
microfluidics that are specifically made to improve the
reproducibility and robustness of droplet generators while
reducing design iterations and facilitating integration with
downstream microfluidic components.

Methods
Simulation of droplet generation with machine learning-
based predictive models using the DAFD tool

Droplet generation with DI water and NF 350 mineral oil was
simulated using the “performance prediction module of the
DAFD (design automation of fluid dynamics) tool previously
developed by our group.22 In brief, neural networks
predicting droplet diameter and generation rate across two
generation regimes of dripping and jetting (four models in
total) are trained on a large experimental dataset consisting
of 888 data points from 43 unique flow-focusing devices.
These models can then be used to predict output droplet size
(25–250 μm) and generation rate (5–500 Hz) from input
design parameters and flow conditions. DAFD was used to
simulate a full-factorial design space of the input parameters,
totaling approximately 4.2 million data points from 28 125
unique flow-focusing geometries (Table 1). The 150 flow
conditions include 10 flow rate ratios between 2 and 22 and
15 capillary numbers, comprised of 6 evenly spaced capillary
numbers between 0.05 and 0.1 and 9 evenly spaced capillary
numbers between 0.161 and 1.05. These capillary numbers
were chosen to give a roughly equal distribution of data
points in the dripping and jetting regimes. The models can
be accessed online at http://dafdcad.org/ and the source code

https://github.com/CIDARLAB/DAFD/ used in this study can
be generated at https://github.com/CIDARLAB/DAFD_Metrics.

Versatility scoring

To find the versatility of a device, the 2D convex hull
of the performance space (droplet size and generation
rate) was calculated using the SciPy spatial library
(https://www.scipy.org/).35 The total versatility score for
the device was calculated as the area of the convex
hull. Droplet size and generation rate versatility scores
were calculated by their respective ranges (maximum
predicted value minus minimum predicted value). Any
devices with less than 3 points in a droplet generation
regime are given a versatility score of −1 and are
excluded from downstream analysis as a convex hull
cannot be formed. This was repeated using points in
the dripping or jetting regime to generate regime-
specific versatility scores.

Stability scoring

The stability of a single point is found by first labeling
droplet generation regime boundary points within the
device's performance space that has an adjacent point of a
different regime (from a step in capillary number or flow rate
ratio). Next, the Euclidean distance (d) in oil and water flow
rates in μL min−1 from the point in question to each
boundary point was calculated, where:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qoil boundary −Qoil point

� �2
þ Qwater boundary −Qwater point

� �2
r

(1)

The stability score is then set as the minimum distance to a
boundary point.

Metric integration with design automation

The design of flow-focusing droplet generators is automated
by finding the closest experimental point to the user
specification, as described previously.22 Next, this starting
point is optimized by increasing and decreasing each of the
eight design parameters to produce 16 candidate designs.
The design with a predicted performance that is closest to
the desired performance is chosen and this process is
repeated until the predicted point is below a set threshold
value. User constraints can be added to limit the search
space. The experimental starting point is returned if it is
already within the threshold.

Metric-driven design automation is achieved by using a
similar algorithm. Rather than picking one starting point,
user-specified “top-k” closest points are chosen. To guarantee
a diversity of candidates, new points are not considered if
they are within 10 μm or 0.25 from the orifice size or
normalized geometric parameters of the previous point,
respectively. The multiple starting positions are then
simultaneously optimized in the same way as the previous

Lab on a ChipPaper

Pu
bl

is
he

d 
on

 2
6 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 S
ta

nf
or

d 
L

ib
ra

ri
es

 o
n 

2/
16

/2
02

4 
12

:0
5:

57
 P

M
. 

View Article Online

http://dafdcad.org/
https://github.com/CIDARLAB/DAFD/
https://github.com/CIDARLAB/DAFD_Metrics
https://www.scipy.org/
https://doi.org/10.1039/d3lc00189j


Lab Chip, 2023, 23, 4997–5008 | 5007This journal is © The Royal Society of Chemistry 2023

version. Once optimized, the versatility and stability scores
are calculated. A total of 230 flow conditions are used
to define device boundaries, consisting of 10 flow rate
ratios evenly spaced between 2 and 22 as well as 23
capillary numbers comprised of 18 evenly spaced points
between 0.05 and 0.5 and 5 evenly spaced points
between 0.5 and 1.

Candidates are then ranked by the metric specified
by the user, with the most versatile or stable point
recommended. All candidate points are available in a
separate .csv file that users can download for
reference. The source code for metric-driven design
automation is available at https://github.com/CIDARLAB/
DAFD_Metrics/.

Main effect analysis

As described previously23 and used before on a similar
dataset,21 main effect analysis was used to approximate the
relative influence that each design parameter had on stability
and versatility. The 4.2 million data points were binned into
each unique input parameter, and the average metric value
for each bin was calculated. The effect of each value is
quantified using the correlation coefficient (R2).

Microfluidic fabrication and operation

Microfluidic geometries were directly etched into
polycarbonate slabs using a desktop CNC micromill (Bantam
Tools), as described previously.29 Once etched, devices are
cleaned with first sonication in IPA and DI water and then a
soft brush. Next, devices are sealed with an 81 μm thick
double-sided adhesive (Adhesives Research ArCare 90445).
Microfluidic devices are then placed in a vacuum to remove
any air bubbles and ensure proper bonding between the
adhesive and the device layers.

Droplet generation with colored DI water and NF 350
mineral oil with 5% V/V Span 80 surfactant (Sigma Aldrich)
was actuated with syringe pumps (Harvard Apparatus).
Images were captured with a high-speed camera (IDT X-
Stream) mounted to an inverted microscope (Zeiss). For
illumination at high frame rates, an 18 000 lumen LED light
source (Expert Digital Imaging) is used. The droplet size and
generation rate of each experiment were measured by
manually analyzing droplet generation videos to measure the
generation rate, and subsequently calculate the diameter
using the water flow rate and conservation of mass equation.

Flow rate calculation

Capillary number and flow rate ratio are commonly used as
dimensionless flow parameters to describe and characterize
the fluid flow in flow-focusing droplet generators.24 Here, the
flow rate of water and oil are calculated based on the
capillary number, flow rate ratio, fluid properties, and device
geometry, as given in eqn (2):

Qoil ¼
Ca:·σ·H·Woil

μoilWwater
1
Or:

− 1
2Woil

� �

Qwater ¼
Qoil

φ
;

(2)

where Qoil is the oil flow rate, Ca. denotes capillary number,
σ represents the surface tension between the continuous
and dispersed phases, H is channel depth, μoil denotes
dynamic viscosity of oil, ϕ represents flow rate ratio, and
Wwater, Woil, and Or. are water inlet, oil inlet, and orifice
widths, respectively. The viscosity of the NF 350 mineral oil
is 57.2 mPa s and the surface tension between the oil and
DI water is 0.005 N m−1.36 The flow rate ratio and the flow
rates for both water and oil can be readily calculated using
eqn (2).

Data and source-code availability

All the data generated in this study and the original 888
experimental data points are freely available at https://
dafdcad.org. Additionally, all code used in this study is
available at https://github.com/CIDARLAB/DAFD_Metrics.
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