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Abstract

Motivation: Transcription factors bind regulatory DNA sequences in a combinatorial manner to

modulate gene expression. Deep neural networks (DNNs) can learn the cis-regulatory grammars

encoded in regulatory DNA sequences associated with transcription factor binding and chromatin

accessibility. Several feature attribution methods have been developed for estimating the predict-

ive importance of individual features (nucleotides or motifs) in any input DNA sequence to its asso-

ciated output prediction from a DNN model. However, these methods do not reveal higher-order

feature interactions encoded by the models.

Results: We present a new method called Deep Feature Interaction Maps (DFIM) to efficiently

estimate interactions between all pairs of features in any input DNA sequence. DFIM accurately

identifies ground truth motif interactions embedded in simulated regulatory DNA sequences. DFIM

identifies synergistic interactions between GATA1 and TAL1 motifs from in vivo TF binding models.

DFIM reveals epistatic interactions involving nucleotides flanking the core motif of the Cbf1 TF in

yeast from in vitro TF binding models. We also apply DFIM to regulatory sequence models of

in vivo chromatin accessibility to reveal interactions between regulatory genetic variants and prox-

imal motifs of target TFs as validated by TF binding quantitative trait loci. Our approach makes sig-

nificant strides in improving the interpretability of deep learning models for genomics.

Availability and implementation: Code is available at: https://github.com/kundajelab/dfim.

Contact: akundaje@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide biochemical profiling experiments have revealed mil-

lions of putative regulatory elements in diverse cell states. These mas-

sive datasets have spurred the development of deep neural network

(DNN) models to predict cell-type specific or context-specific molecu-

lar phenotypes such as TF binding, chromatin accessibility and gene

expression from DNA sequence (Alipanahi et al., 2015; Kelley et al.,

2016; Zhou and Troyanskaya, 2015). Beyond high prediction accur-

acy, the primary appeal of DNNs is that they are capable of learning

predictive sequence features and modeling non-linear feature interac-

tions directly from raw DNA sequence without any prior assump-

tions. Hence, interpreting these purported black box models could

reveal novel insights into the combinatorial regulatory code.

Advances in feature attribution methods for DNNs have enabled

the identification of predictive cis-regulatory patterns in DNA sequen-

ces used as input to the models. Feature attribution methods estimate

the contribution (or importance) of features, such as individual

nucleotides or contiguous subsequences (e.g. motifs), in an input

DNA sequence to a model’s output prediction. A perturbation-based,

forward-propagation approach known as in-silico mutagenesis (ISM)

quantifies the importance of a nucleotide in an input DNA sequence

as the maximal change in the output prediction from the DNN model

when the observed nucleotide (e.g. a G) at that position is mutated

to any of the alternative bases (e.g. A, C or T). ISM has been used

to score the potential molecular impact of genetic variants in

regulatory DNA sequences (Alipanahi et al., 2015; Kelley et al., 2016;
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Zhou and Troyanskaya, 2015). However, ISM is computationally in-

efficient since each perturbation at every position in an input sequence

requires a separate forward propagation to the output through the

network. ISM also fails to highlight important features masked by sat-

uration due to buffering interactions with other features (e.g. multiple

motif instances in a sequence that buffer each other) (Shrikumar et al.,

2017). SHAP is a perturbation-based feature attribution method that

borrows from game theory (Lundberg and Lee, 2017). Max-Ent is a

feature attribution method that uses a Markov chain Monte Carlo al-

gorithm to find the maximum-entropy distribution of inputs that pro-

duced a similar hidden representation to the chosen input (Finnegan

and Song 2017). While SHAP and Max-Ent show improved sensitiv-

ity and specificity relative to ISM, they do not scale efficiently to com-

prehensively characterize feature importance across millions of

regulatory sequences. An alternative family of computationally effi-

cient backpropagation approaches decompose the output prediction

corresponding to an input sequence by recursively propagating contri-

bution scores through the layers of the DNN from the output to the

input. One single backpropagation pass provides the contribution of

all nucleotides in an input DNA sequence to the output prediction.

The gradient of the output with respect to each nucleotide in the input

DNA sequence—known as a saliency map (Simonyan et al., 2014)—

is one such estimate of importance and has been used to identify pre-

dictive nucleotides in regulatory DNA sequences. Other related

approaches such as DeepLIFT (Shrikumar et al., 2017) and integrated

gradients (Sundararajan et al., 2017) differ in the definition of the im-

portance score that is backpropagated and provide improved sensitiv-

ity in the presence of saturation effects. DeepLIFT (Shrikumar et al.,

2017) has also been shown to be an efficient approximation of SHAP

scores (Lundberg et al., 2018).

Current feature attribution methods only provide the importance

of individual features. They do not highlight predictive, higher-order

feature interactions that are learned by the DNN model.

Perturbation-based approaches such as ISM cannot scale to compre-

hensively score all pairwise and higher-order interactions between

nucleotides or subsequence features. Recently, an efficient algorithm

was proposed to calculate SHAP-based pairwise feature interaction

scores (Lundberg et al., 2018) specifically from tree-based ensemble

models. However, computing SHAP interactions from neural net-

work models between all pairs of features in regulatory DNA

sequences is computationally inefficient and cannot scale to reveal

comprehensive interaction maps across millions of regulatory

sequences.

Here, we present an efficient approach called Deep Feature

Interaction Maps (DFIM) to estimate pairwise interactions between

features (nucleotides or subsequences) in an input DNA sequence

mapped to an associated regulatory phenotype by a neural network.

We define a novel Feature Interaction Score (FIS) between any

pair of features (source feature and target feature) in an input

DNA sequence as the change in the importance score of the target

feature when the source feature is perturbed, while keeping all the

other features in the sequence intact. By leveraging efficient

backpropagation-based feature attribution methods, we can effi-

ciently compute FIS between all pairs of nucleotides or predictive

motifs across large sets of input DNA sequence. Aggregate summary

statistics of the pairwise Feature Interaction Score across multiple

sequences provide insights into common, shared patterns of feature

interactions.

We benchmark DFIM in controlled simulations that explicitly

encode motif interactions. We use DFIM to reveal synergistic inter-

actions between GATA1 and TAL1 motifs from in vivo TF binding

models. We apply DFIM to reveal epistatic interactions involving

nucleotides flanking the core motif of the Cbf1 TF in yeast from

in vitro TF binding models. We also apply DFIM to regulatory se-

quence models of in vivo chromatin accessibility to reveal interac-

tions between regulatory genetic variants and proximal motifs of

target TFs as validated by TF binding quantitative trait loci.

2 Materials and methods

We assume that we have trained a deep neural network to accurately

map one-hot encoded DNA sequences X of length L to a categorical

(binary or multiclass classification) or continuous (regression) out-

put O. Let Y refer to the scalar predicted output O from the neural

network for regression tasks. For classification tasks, let Y refer to

the scalar input to the final output sigmoid (i.e. logit) of the neural

network.

2.1 Nucleotide-resolution feature interaction score (FIS)
We are given a one-hot encoded input DNA sequence

X0 2 f0; 1gf4�Lg i.e. a matrix of size 4;L½ � such that X0 b; p½ � ¼ 1 for

the observed nucleotide b 2 fA;C;G;Tg at position 1�p�L (Fig. 1).

First, we compute CX0
a matrix of size 4;L½ � that contains the

importance (or contribution) of every nucleotide (rows) at each pos-

ition in the sequence (Fig. 1 Step 1). While our approach extends to

any other efficient feature attribution method, for the analyses in

this paper, we show results using both DeepLIFT (Shrikumar et al.,

2017) and gradient saliency maps as importance scores (Simonyan

et al., 2014). In gradient-based saliency maps, for a specific input se-

quence X0, the output Y0 can be approximated by a first-order

Taylor expansion Y0 �
X

p;b
w0 b; p½ �X0 b;p½ � where w0 is the partial

derivative (gradient) of Y with respect to the input sequence variable

X evaluated at X0 i.e. w0 ¼ @Y
@X jX0

. It is worth noting that the entire

gradient matrix w0 can be computed efficiently in one backpropaga-

tion pass. We then perform a point-wise multiplication of the gradi-

ent matrix w0 with the one-hot encoded observed input sequence X0

to obtain the importance scores for the observed nucleotides b at

each position p i.e. CX0
¼ w0 b;p½ �X0 b;p½ �. Only the observed

nucleotides at each position can have non-zero values. DeepLIFT

contribution scores quantify the sensitivity of the output to finite

changes in the input (Shrikumar et al., 2017). This is in contrast to

gradients, which measure the sensitivity of the output to infinitesi-

mal changes in the input. Specifically, the DeepLIFT algorithm

backpropagates a score (analogous to gradients) which is based on

comparing the activations of all the neurons in the network for the

actual input sequence X0 to those obtained when using neutral
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Fig. 1. Deep Feature Interaction Maps: The DFIM, illustrated in six steps, quan-

tifies the maximal Feature Interaction Score (FIS) of every position in a se-

quence with all other positions
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‘reference’ sequences (Shrikumar et al., 2017). We use dinucleotide-

shuffled versions of X0 as reference sequences unless otherwise

specified.

Our goal is to query the neural network to estimate the inter-

action between the observed nucleotide at one position in the se-

quence (source feature) and the observed nucleotide at some other

position (target feature) in the sequence. Let a; sð Þ represent the

source feature i.e. the observed source nucleotide a 2 fA;C;G;Tg at

a source position s such that X0 a; s½ � ¼ 1. Let b; sð Þ represent the tar-

get feature i.e. observed target nucleotide b 2 fA;C;G;Tg at some

target position t such that X0 b; t½ � ¼ 1.

Intuitively, we define the Feature Interaction Score FISX0

b; tð Þj a; c; sð Þð Þ of the target feature on the source feature as the

change in the importance score of the target feature b; sð Þ when the

source feature a; sð Þ is mutated to a different nucleotide c; sð Þ. To

compute FIS, we create a new mutated sequence X0
0 from X0 where

we switch the observed nucleotide a at source position s to a different

mutant nucleotide c 2 fA;C;G;Tg, while keeping the nucleotides at

all other positions as they were in X0 (Fig. 1 Step 2). We then compute

the importance matrix CX0

0 for X0
0 as we did for X0 (Fig. 1 Step 3).

The FIS of the target feature with the source feature is defined as

FISX0
b; tð Þj a; c; sð Þð Þ ¼ CX0

b; t½ � � CX0
0 b; t½ � (1)

Since, only two backpropagation passes are required to compute

CX0
; t½ � and CX0

0 ; t½ � for all 1� t�L, we can efficiently compute the

FIS of all target features FISX0
�j a; c; sð Þð Þ in a sequence with respect to

a specific source feature mutation (Fig. 1 Step 4). Note that the FIS is

a directional interaction score of the target with the source. In some

cases, we may only be interested in the magnitude of the score rather

than its sign. In such cases, we use the absolute value of the FIS.

We define the maximal Feature Interaction Score (maxFIS) of

the target feature with the source feature as the maximal FIS margi-

nalized over all possible values of the mutant nucleotide c at the

source feature a; sð Þ i.e maxFISX0
b; tð Þj a; sð Þð Þ ¼ maxc b; tð Þj a; c; sð Þð Þ

(Fig. 1 Step 5).

A nucleotide-resolution Deep Feature Interaction Map (DFIM)

summarizes the maxFIS scores for all pairs of source and target fea-

tures in an input DNA sequence (Fig. 1 Step 6).

2.2 Aggregate statistics of nucleotide-resolution FIS

over multiple input sequences
In order to analyze the prevalence of the FIS between a source pos-

ition s and target position t across a collection of input sequences Xi,

we first identify the subset of sequences S ¼ fXig that have identical

source nucleotides at the source position and identical target nucleo-

tides at the target position i.e 8Xi;Xj 2 S;Xi a; s½ � ¼ Xj a; s½ � ¼ 1

AND 8Xi;Xj 2 S;Xi b; s½ � ¼ Xj b; s½ � ¼ 1. We then compute aggregate

statistics such as the mean of the FIS or absolute FIS corresponding

to each b; tð Þj a; c; sð Þð Þ over all sequences in the subset S. (See Fig. 8

as an example).

2.3 Motif-resolution feature interaction score
We are often interested in the FIS of a specific target motif

fðbp; tpÞ; :::; ðbq; tqÞg i.e. a specific subsequence of nucleotides

fbp; :::;bqg at a specific subset of contiguous target positions

ftp; :::; tqg with a source nucleotide-resolution feature a; sð Þ (i.e. spe-

cific source nucleotide at specific source position) such as a regula-

tory single nucleotide variant (SNV). In such a case, we compute the

FIS of a target motif with a source nucleotide feature as the differ-

ence of the sum of importance scores across all target nucleotides

fðbp; tpÞ; :::; ðbq; tqÞg in the target motif in the original sequence X0

and the mutated sequence X0
0 (obtained by mutating a; sð Þ in X0 to

c; sð Þ).

FISX0

�
fbp; :::; bqg; ftp; :::; tqg
� �

j a; c; sð Þ
�

¼
X

b;tð Þ2fðbp ;tpÞ;:::;ðbq ;tqÞg
CX0

b; t½ �

�
X

b;tð Þ2fðbp ;tpÞ;:::;ðbq ;tqÞg
CX0

0
b; t½ �

(2)

To compute the FIS of a target motif fðbp; tpÞ; :::; ðbq; tqÞg with a

source motif f ak; tkð Þ; :::; al; tlð Þg (See Fig. 3 as an example), we use a

different source mutation method. One option would be use the

maximal FIS of the target motif over all possible single nucleotide

mutations of each position in the source motif. However, this

procedure is computationally infeasible for long motifs. We instead,

generate one mutant sequence, where we mutate the one-hot

encoding (where rows 1–4 correspond to A, C, G, T) of all positions

fsk; :::; slg in the source motif to the expected background GC

nucleotide frequency fGC i.e. the mutant sequence X0
0 has

X0
0 2; 3ð Þ; s½ � ¼ fGC

2 ;X0
0 1;4ð Þ; s½ � ¼ 1� fGC

2 . The FIS of the target motif

with the source motif is once again the difference of the sum of im-

portance scores across all target nucleotides fðbp; tpÞ; :::; ðbq; tqÞg in

the target motif feature between the original sequence X0 and the

mutated sequence X0
0.

FISX0

�
fbp; :::; bqg; ftp; :::; tqg
� �

j fak; :::; alg; fGC; fsk; :::; slgð Þ
�

¼
X

b;tð Þ2fðbp ;tpÞ;:::;ðbq ;tqÞg
CX0

b; t½ �

�
X

b;tð Þ2fðbp ;tpÞ;:::;ðbq ;tqÞg
CX0

0
b; t½ �

(3)

2.4 Statistical significance of FIS
Given a continuous distribution of FIS, across a collection of

input sequences, we define statistically significant interactions based

on an empirical null distribution of scores from dinucleotide

shuffled versions of the input sequences. For each dinucleotide

shuffled input sequence, we compute FIS for all nucleotide pairs. We

fit a Gaussian distribution to this null empirical distribution of FIS

scores. FIS values passing a P-value of 0.05 with respect to this null

distribution are considered statistically significant. We use the

Benjamini-Hochberg procedure for multiple hypothesis correction.

Supplementary Figure S1 demonstrates how the null model can be

used to identify responding motifs in the context of a longer

sequence.

2.5 Comparison of DFIM to SHAP interaction scores and

pairwise ISM interaction scores
For an input sequence with F features (nucleotides/motifs), SHAP

interaction scores scale at least quadratically to compute all pairwise

interactions giving a complexity ranging from O F2
� �

to O 2F
� �

(Lundberg et al., 2018). A pairwise ISM-based interaction score,

defined as the difference between the ISM score obtained by jointly

mutating two features and the sum of the ISM scores of individual

features, also has a complexity of O F2
� �

. For DFIM, we require one

backpropagation pass to obtain importance scores for the original

sequence. Then for each of the F source features, we need one more

backpropagation pass to obtain FIS of that source with all target

features. Thus, DFIM exhibits a complexity of O(F) scaling linearly

in the number of features. Our proposed FIS is essentially an

DFIM i631
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efficient approximation of SHAP interaction scores. Further, in con-

trast to SHAP interaction scores and pairwise ISM interaction scores

which are necessarily symmetric over the source and target, FIS is

directional and can produce asymmetric interaction scores.

3 Results

3.1 Benchmarking FIS on ground-truth motif interac-

tions embedded in simulated regulatory DNA

sequences
To benchmark FIS, we simulated 60 K random DNA sequences

(0.46 G/C frequency) of length 200 bp. We divided these into 3 sets

of 20 K sequences. We randomly embedded 1 or 2 instances of the

ELF1 motif [using the highest affinity sequence from Position

Weight Matrix (Kheradpour and Kellis, 2014)] in the sequences in

Set 1, 1 or 2 instances of the SIX5 motif in Set 2 and 1 or 2 instances

of both ELF1 and SIX5 motifs in Set 3. We further independently

embedded 0 or 1 instances of the AP1 and TAL1 motifs in a random

subset of sequences across all 3 sets (Kheradpour and Kellis, 2014)

(Supplementary Methods). We then set up a binary classification

task where all sequences in Set 3 (ELF1 and SIX5) were labeled as

positive and all other sequences from Sets 1 and 2 were labeled as

negatives (Fig. 2A). We trained a Convolutional Neural Network

(CNN) with one convolutional and one dense layer (Supplementary

Methods). We achieved 100% classification accuracy on held out

validation set of sequences indicating the model had learned the ne-

cessary interaction between ELF1 and SIX5. We computed motif-

resolution FIS for all pairs of embedded motif instances (SIX5, ELF1,

AP1 and TAL1) for all sequences in the positive class (i.e. Set 3).

We used DeepLIFT with a fixed GC reference for computing

importance scores since the underlying sequences were generated

using a fixed GC background. Only pairs of SIX5 and ELF1 motifs

(positive control) showed strong FIS (Fig. 2B, green distribution),

compared to all other pairs of motifs (negative controls) demonstrat-

ing that can effectively discriminate ground truth interactions learned

by a neural network. We further assessed the significance of these

interactions using a empirical null distribution from dinucleotide

shuffled sequences and found that the vast majority of true ELF1-

SIX5 interactions have significant (P<0.05) P-values, even after

multiple hypothesis correction. None of the other motif pairs show

statistically significant interactions (Supplementary Fig. S2A and B).

The results are replicated using gradient saliency maps as importance

scores (Supplementary Fig. S2C and D).

3.2 Uncovering epistatic motif interactions of

co-binding TFs from CNN models of in vivo TF binding
We analyzed CNN models of in vivo TF binding to investigate epi-

static interactions between motifs of co-binding TFs. We trained a

multi-task CNN model to classify 1 kbp sequences centered at

GATA1, GATA2 and TAL1 ENCODE ChIP-seq peaks (positive

class) in erythroid K562 cells from all other chromatin accessible

DNase-seq peaks in K562 (negative class) (ENCODE Project

Consortium, 2012; Gerstein et al., 2012) (Supplementary Methods).

The CNN model with 5 convolutional layers (25 convolutions, size

10), a max pooling layer (size 25) and a sigmoid activation

(Supplementary Methods), achieved mean auROC of 0.953 and

mean auPRC of 0.459 across all three tasks on held-out test set.

Next, we identified all matches to the known motifs of GATA1 and

TAL1 in all ChIP-seq peak sequences (Supplementary Methods). We

then computed motif-resolution FIS (using DeepLIFT with shuffled

reference as importance scores) for all pairs of GATA1, TAL1 motif

instances across all sequences using GATA1 as the source motif. We

observed several instances with strong FIS between proximal

GATA1 and TAL1 motifs which corroborates their experimentally

validated co-binding interactions (Kassouf et al., 2010) (Fig. 3A). To

understand the relationship between the distance between motif

instances and their interaction scores, we binned GATA1 and TAL1

motif pairs into 4 distance bins—within 20 bp (n¼13 004), 20–

50 bp (n¼18 898), 50–100 bp (n¼28 684) and 100–200 bp

(n¼211 154). We compared the distribution of FIS for the motif

pairs across the bins. As expected, TAL1 and GATA1 motifs in close

proximity (<20 bp) showed statistically significant higher inter-

action scores than all three other bins (P<1e�16, Mann Whitney

test for all 3 comparisons) (Fig. 3A). However, interestingly, we

observed some strong long-range interactions between motifs as far

as 70 bp apart (Fig. 3B), an observation corroborated by a recent

analysis of SNP effects on TAL1 ChIP-seq signal in erythroid cells

that found that GATA1 motif mutations impact TAL1 binding at

distances as great as 75 bp (Behera et al., 2018). The interactions

were also symmetric, such that mutating TAL1 demonstrated a simi-

lar distribution of FIS on GATA1 (Supplementary Fig. S4).

3.3 Discovering interactions between regulatory

variants and their target TF motifs from CNN models of

in vivo chromatin accessibility
DNNs mapping regulatory DNA sequences to TF binding and chro-

matin accessibility have been previously used to score the predicted

in-silico allelic effects of putative regulatory genetic variants based

on ISM (Alipanahi et al., 2015; Kelley et al., 2016; Zhou and

Troyanskaya, 2015). Here, we instead use FIS to investigate an or-

thogonal question—What proximal sequence features are affected

Feature Binary class
label 

Sequence Set 1 (ELF1 only) 0
Sequence Set 2 (SIX5 only) 0
Sequence Set 3 (ELF1 AND SIX5) 1

ELF1 motif SIX5 motif

ELF1 and TAL1

ELF1 and SIX5

AP1 and ELF1

AP1 and TAL1

AP1 and SIX5

SIX5 and TAL1

FIS

Fe
at

ur
e 

pa
irs

0.00 0.05 0.10 0.15 0.20 0.25
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B

Fig. 2. (A) Simulated dataset: Sequences in the positive class contain both

ELF1 and SIX5 motif instances. (B) Distribution of feature interaction scores

(FIS) for different motif pairs. Pairs of ELF1 and SIX5 motifs are the only pair

with high FIS
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by (interact with) regulatory genetic variants? Tehranchi et al. devel-

oped a pooling-based approach to identify thousands of SNVs that

have allelic effects on TF binding (as measured by ChIP-seq) across a

large collection of genotyped lymphoblastoid human cell-lines

(Tehranchi et al., 2016). They provide coordinates, effect sizes, ref-

erence/alternative alleles and the allele with stronger binding for

statistically significant binding QTLs (bQTLs) and non-significant

background control SNVs in ChIP-seq peaks for JUND, NFKB,

SPI1, STAT1 and POU2F1. This dataset provides an excellent re-

source to investigate the feature interactions of bQTLs. Further, we

wondered if we could discover bQTL feature interactions for differ-

ent TFs from a single DNN model trained to predict chromatin ac-

cessibility (instead of TF binding) from sequence.

Hence, we trained a multi-task (18 tasks) CNN model to map

1kbp length DNA sequences to binary chromatin accessibility pro-

files across 16 primary hematopoietic cell types (with ATAC-seq

data) (Corces et al., 2016) and 2 ENCODE cell-lines (with DNase-

seq data) including the GM12878 lymphoblastoid cell-line (LCL)

(ENCODE Project Consortium, 2012). The model achieved

high performance on the test set (average auPRC ¼ 0.69,

auROC¼0.91). We used the LCL task to investigate bQTL feature

interactions using DeepLIFT with shuffled reference as importance

score. We restricted our analysis to the statistically significant (allel-

ic binding P<5e�05 as recommended by Tehranchi et al., 2016)

bQTLs that overlapped the DNase-seq peaks in GM12878.

To understand proximal interactions, for each bQTL, we used

FIS to estimate the effect of mutating the reference allele to all alter-

nate alleles at the source QTL on every target nucleotide 615 bp

around the QTL. First, we observed strong positive (Fig. 4A) and

negative (Fig. 4B) interactions of bQTLs with nucleotides of over-

lapping target TF motifs. The direction of the allelic effect (stronger

or weaker ChIP-seq signal) of the reference and alternate bQTL

alleles on TF binding also matched the predicted direction of change

(stronger or weaker motif score). E.g. A significant JUND bQTL

at chr22: 42925130 falls in a high affinity JUND binding motif

(Fig. 5A). The reference A allele has higher binding than the alterna-

tive G allele with P-value 1.71e�140 in the Tehranchi et al. (2016)

study. FIS predicts that the G allele (weaker allelic binding) but not

the A allele (stronger allelic binding) will destroy the importance of

the entire JUND motif.

Next, we also found several TF-bQTLs in the flanking nucleoti-

des of weak affinity motif matches of the target TF having signifi-

cant interaction effects with the entire motif. E.g. a significant SPI1

bQTL at chr1: 94169843 has reference allele T (with stronger

binding) and alternate allele C. The bQTL is in the flanking

nucleotides of a low affinity SPI1 site where only the core GGAA

matches the canonical motif. FIS predicts that the C allele (weaker

binding) destroys the importance scores of the core GGAA element

(Fig. 5A). Tehranchi et al. (2016) and several other studies have

reported that a large fraction (70–90%) of QTLs do not overlap

high affinity instances of canonical TF motifs. We hypothesize that

several QTLs may be affecting flanking nucleotides of weak affin-

ity TF motif instances. Finally, while most bQTLs with statistically

significant interactions exhibit the maximal absolute interaction

with other nucleotides within 10 bp of the bQTL, we also observe
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strong and significant longer-range interactions at distances rang-

ing from 20 to 200 bp (Fig. 6A). E.g. an SPI1 bQTL has a signifi-

cant interaction with a proximal SP1 motif but also a strong

interaction with a RUNX1 motif 20 bp away (Fig. 6B). SPI1 QTLs

were also found to affect motifs 100 s of base pairs away

(Supplementary Fig. S5).

As a negative control, for each TF, we also evaluated the FIS of

a matched number of conservative control SNVs from the

Tehranchi et al. (2016) study that overlap the TF’s ChIP-seq peaks

and LCL DNase-peaks with least significant allelic effects on

binding (allelic binding p � 1). For each bQTL and control

SNV, we recorded its maximal absolute FIS (maxAbsFIS) over all

target nucleotides 615 bp around the SNV. For all the TFs, we

found that the bQTLs exhibit significantly (Mann Whitney test)

stronger maxAbsFIS than control SNVs (Fig. 7), indicating that FIS

may be an alternative approach to ISM to identify putative regula-

tory variants. This result was replicated using gradient based im-

portant scores (Supplementary Fig. S3).
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3.4 Discovering interactions between nucleotides

flanking the core sequence motif of the Cbf1 TF in yeast

from in vitro binding DNN models
Paralogous TFs have been recently shown to have distinct sequence

affinity preferences to nucleotides flanking the core canonical

binding motifs. Le and Shimko et al. recently developed a micro-

fluidics based in vitro TF binding assay called BET-seq to investi-

gate this question (Le et al., 2018). They used the BET-seq assay to

measure high-resolution in vitro binding affinity landscapes of the

yeast TFs Cbf1 and Pho4 to a high complexity library of >1 mil-

lion DNA sequences with a fixed central core E-box sequence

(CACGTG) and 5 variable flanking nucleotides on either side.

They trained a feed forward neural network to predict relative

binding affinity (DDG) for each of the TFs from the 10 bp flanking

sequences (using a flattened one-hot encoding) in the library (Le

et al., 2018) (Fig. 8A). The model architecture consisted of 3 dense

layers of sizes 500, 500 and 250 with ReLU activation followed by

batch normalization and dropout (P¼0.25) with a final dense

classification layer having a linear activation. They used a distilla-

tion approach to interpret the NN model by fitting a linear model

with all mononucleotide features across all positions and all di-

nucleotide features across all pairs of positions to the output pre-

dictions of the NN. They found that dinucleotide features were

critical for the linear model to have a good fit (r2 > 0:95) especially

for Cbf1. They then estimated the contributions of all pairwise

interaction terms by comparing the mononucleotideþdinucleotide

linear model to a mononucleotide-only linear model. Cbf1 was

found to exhibit significant interactions between several pairs of

flanking nucleotides (Le et al., 2018).

We instead used DFIM to directly query the Cbf1 neural

network model and estimate pairwise nucleotide-resolution FIS

between all pairs of nucleotides at all positions for all sequences

in the library (Fig. 8B). We computed aggregate statistics (mean)

of the absolute nucleotide-resolution FIS for all pairs of nucleotide

features across the 5000 sequences with strongest binding affinity

(lowest measured DD G). We obtain four (40 � 40) aggregate

DFIMs where each map corresponds to one of the 4 bases

fA;C;G;Tg as the observed source nucleotide. The rows in each

40 � 40 map correspond to 4 mutant bases � 10 source positions,

while the columns correspond to 4 target bases � 10 target posi-

tions. To ease interpretation, we compute a marginalized 40 � 40

aggregate DFIM that records the maximal average score over all

mutant bases for each source base, source position, target base

and target position (Fig. 8C), marginalized over the 3 potential

mutations for a given source base. We observe that the marginal-

ized aggregate DFIM for the high binding affinity sequences ex-

hibit several strong interactions between flanking nucleotides

(Fig. 8C). The map corroborates several of the strongest interac-

tions identified by Le and Shimko using the distillation approach

such as the strong interaction between a T at the �1 position and

an A at the þ1 position (Le et al. 2018). Our maps also identify

novel interactions such as a strong interaction between T at �1

and T at þ2. In contrast, the aggregate DFIMs across 5000

sequences with weakest binding affinity (highest measured DDG)

exhibit uniformly weak interaction scores.

4 Discussion

We present an efficient method called Deep Feature Interaction

Maps (DFIM) to identify epistatic interactions between all pairs of

nucleotides or motif features in any DNA sequence input to a deep

learning model for regulatory genomics. Our method accurately
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recovers ground truth interacting motifs in simulated regulatory

DNA sequences. When applied to deep learning models of in vivo

TF binding, we recover known proximal interactions between

motifs of interacting co-factors while also discovering long-range

interactions between motifs as far as 75 bp apart. We interpret deep

learning models trained on in vitro TF binding to discover extensive

interactions between pairs of nucleotides in sequences flanking core

TF binding motifs. Finally, we interpret deep learning models of

in vivo chromatin accessibility to generate nucleotide-resolution

interaction maps for non-coding regulatory sequences surrounding

SNVs (bQTLs) that affect binding of transcription factors. Our

maps link binding QTLs to nearby sequence features including high

and low affinity matches to the canonical binding site of the TF

whose binding is disrupted. We also find bQTLs interacting with

motifs of multiple co-binding TFs. These epistatic interactions seem

to capture both cooperation and competition. While our primary

focus in this manuscript is on interpreting feature interactions in

DNA sequence inputs, DFIM can easily be generalized to other data

modalities.

Partial dependence plots are commonly used to understand the

sensitivity of a prediction to a one or more features (Friedman,

2001). DFIM serves as complementary approach to understand the

predictive higher-order, non-linear interactions between features.

DFIM is most efficient to estimate all pairwise interactions between

pre-determined features such as known binding sites or SNVs or a

sparse set of de-novo discovered predictive features with significant

importance scores. However, DFIM also scales well to estimate

interactions between all nucleotides in large sets of sequences be-

cause it leverages efficient backpropagation-based feature attribu-

tion methods. While DFIM is generally compatible with any

efficient feature attribution method, we have not evaluated our ap-

proach on all such methods. However, we have found overall strong

replication of DFIM results and associated conclusions by using two

separate importance scores, namely DeepLIFT and gradient saliency

maps. This suggests that DFIM could generalize to other importance

scoring approaches.

There are some caveats to interpreting feature interactions

derived from DFIM. Feature importance scores from any feature

attribution method are only meaningful for examples that are pre-

dicted correctly. Since feature interaction scores from DFIM are

based on feature importance scores, the validity of DFIM is also

restricted to examples that are correctly predicted by high perform-

ance models. Further, vulnerabilities of the feature attribution

method used in DFIM transfer over to the interaction scores.

Hence, we recommend using multiple feature attribution methods

to obtain robust estimates of interactions. Changes in model archi-

tecture can also change the interactions encoded by the model and

thus the interactions learned with DFIM. Despite these mentioned

caveats, the case studies we present here showcase the utility of

DFIM to provide a nuanced view into the combinatorial code of

regulatory DNA sequences through the lens of predictive neural

network models.
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Fig. 8. (A) A feed forward neural network to fit binding affinities of a library of 10 bp sequences flanking the core Cbf1 motif. (B) Source nucleotide A at source

position �1 in an example sequence is mutated to a G. Row 1 and 2 show the importance scores of all nucleotides in the original and mutated sequence respect-

ively. Row 3 shows the feature interaction scores (FIS) of all target nucleotides with respect to the source feature. We observe a strong interaction between source

(�1, T) and target (þ1, A). (C) Marginalized aggregate deep feature interaction map (DFIM) for Cbf1 averaged across the top 5 K highest binding affinity sequen-

ces. The rows correspond to (source position, source base, argmax mutant base). The columns correspond to (target position, target base). We observe a consist-

ent strong interaction between source feature (�1, T) and target feature (þ1, A)
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