
Sequence analysis

DeCoDe: degenerate codon design for complete

protein-coding DNA libraries

Tyler C. Shimko 1, Polly M. Fordyce1,2,3,4 and Yaron Orenstein5,*

1Department of Genetics, 2Department of Bioengineering and 3Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA, 4Chan

Zuckerberg Biohub, San Francisco, CA 94158, USA and 5School of Electrical and Computer Engineering, Ben-Gurion University of the

Negev, Beer-Sheva 8410501, Israel

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on August 13, 2019; revised on February 13, 2020; editorial decision on March 2, 2020; accepted on March 13, 2020

Abstract

Motivation: High-throughput protein screening is a critical technique for dissecting and designing protein function.
Libraries for these assays can be created through a number of means, including targeted or random mutagenesis of
a template protein sequence or direct DNA synthesis. However, mutagenic library construction methods often yield
vastly more nonfunctional than functional variants and, despite advances in large-scale DNA synthesis, individual
synthesis of each desired DNA template is often prohibitively expensive. Consequently, many protein-screening
libraries rely on the use of degenerate codons (DCs), mixtures of DNA bases incorporated at specific positions dur-
ing DNA synthesis, to generate highly diverse protein-variant pools from only a few low-cost synthesis reactions.
However, selecting DCs for sets of sequences that covary at multiple positions dramatically increases the difficulty
of designing a DC library and leads to the creation of many undesired variants that can quickly outstrip screening
capacity.

Results: We introduce a novel algorithm for total DC library optimization, degenerate codon design (DeCoDe), based
on integer linear programming. DeCoDe significantly outperforms state-of-the-art DC optimization algorithms and
scales well to more than a hundred proteins sharing complex patterns of covariation (e.g. the lab-derived avGFP lin-
eage). Moreover, DeCoDe is, to our knowledge, the first DC design algorithm with the capability to encode mixed-
length protein libraries. We anticipate DeCoDe to be broadly useful for a variety of library generation problems,
ranging from protein engineering attempts that leverage mutual information to the reconstruction of ancestral pro-
tein states.

Availability and implementation: github.com/OrensteinLab/DeCoDe.

Contact: yaronore@bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A protein’s function is inextricably linked to its amino acid se-
quence. Stability, flexibility, enzymatic turnover and binding affinity
all depend directly on the specific structures available to the se-
quence of a given protein (Eisenmesser et al., 2005; Motlagh et al.,
2014). Due to the critical importance of protein products in medi-
cine and industry, a number of high-throughput screening techni-
ques, including cell-surface display (Barbas et al., 1991; Boder and
Wittrup, 1997; Freudl et al., 1986; Rockberg et al., 2008), phage
display (Smith, 1985), mRNA display (Roberts and Szostak, 1997;
Tabuchi et al., 2001) and droplet-based enzyme screens (Agresti
et al., 2010; Romero et al., 2015) have been developed to link pro-
tein sequence to function. These techniques all require starting

libraries of DNA encoding a vast number of protein variants, gener-
ally > 106. Consequently, a number of strategies have been devel-
oped to quickly and cheaply generate pools of synthetic DNA
templates to express the desired protein libraries.

The gold standard for DNA library construction is direct synthe-
sis of each individual library member followed by pooling (Beaucage
and Caruthers, 1981). This strategy guarantees the inclusion of each
desired DNA sequence without introducing any undesired con-
structs. However, direct synthesis is often prohibitively expensive
for large libraries and has limitations on both the length of each syn-
thesized construct and the total number of constructs that can be
synthesized in parallel. While recent advances in DNA synthesis tech-
nology are enabling direct and specific synthesis for longer and larger
libraries (LeProust et al., 2010; Oling et al., 2018; Plesa et al., 2018),

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3357

Bioinformatics, 36(11), 2020, 3357–3364

doi: 10.1093/bioinformatics/btaa162

Advance Access Publication Date: 16 March 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024

http://orcid.org/0000-0003-1441-0222
http://github.com/OrensteinLab/DeCoDe
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/


the number of possible full-length protein-coding constructs (103–
106) remains several orders of magnitude below the desired library
sizes for most protein-screening methods (106–1013).

Methods that exploit the redundancy of the genetic code to gen-
erate large, semi-targeted libraries balance low cost, simple produc-
tion with library output sizes suitable for protein screening. A
degenerate codon (DC) is a mixture of nucleotide triplets capable of
collectively encoding more than one amino acid (Arkin and Youvan,
1992; LaBean and Kauffman, 1993; Schultz and Richards, 1986;
Wolf and Kim, 1999). DC libraries combine mixtures of nucleotides
at specific positions during DNA synthesis to include only specific
subsets of the codon table and ultimately allow expression of protein
mixtures from a single pooled DNA synthesis reaction. However, as
each DC is independent of each other DC in the construct, including
a large number of DCs can quickly generate a library of possible
DNA and protein sequences too large to be screened.

A number of groups have developed computational methods to
maximize the number of desired target sequences created using DCs
under a user-specified library size limit. Unfortunately, this problem is
NP-hard (Parker et al., 2011; Pierce and Winfree, 2002), meaning
that a fast (polynomial time) algorithmic solution is extremely unlike-
ly to exist. Instead, researchers have had to rely on a variety of heuris-
tics or relaxations of the problem to algorithmically design DC
libraries. One of the first methods to allow simultaneous optimization
of all covarying sites was LibDesign (Mena and Daugherty, 2005).
LibDesign optimizes DC usage to include as many complete targeted
protein sequences as possible in the final library under a limit on the
total number of sequences produced. As a result, LibDesign libraries
directly account for the three main structures of protein covariation
as shown in Figure 1(A–C). However, because this algorithm relies on
brute-force search, it is computationally inefficient and intractable for
modern protein library designs that may vary at dozens or more posi-
tions. Moreover, LibDesign is incapable of accounting for length vari-
ation within the target library or using multiple synthesis reactions
(i.e. a DNA library comprised of multiple sublibraries with each subli-
brary produced according to a separate DNA template) to cover more
targets without incurring large library size penalties.

As an alternative to total-library optimization, optimization of com-
binatorial mutagenesis (OCoM) measures library quality by the main-
tenance of single and pairwise mutational frequencies (Fig. 1A and B)
and optimizes libraries using integer linear programming (ILP) (Parker

et al., 2011). However, the pairwise sequence potential employed by
OCoM fails to capture higher-order covariation patterns (Fig. 1C) that
would be explicitly considered under LibDesign’s objective. Such pat-
terns are particularly important for functional networks within proteins
(Halabi et al., 2009; Lockless and Ranganathan, 1999; Socolich et al.,
2005) and could prove critical for the generation of libraries optimized
for inclusion of functional variants. Furthermore, OCoM cannot design
libraries of multiple lengths.

Due to the problem’s hardness, some groups have introduced
relaxations to solve it in polynomial time with respect to the input
size. SwiftLib is a DC optimization algorithm based on dynamic
programming (Jacobs et al., 2015). To reduce computational com-
plexity, SwiftLib considers each position of the protein library inde-
pendently. Critically, SwiftLib can include multiple DCs at a given
position to better cover the target library while staying under the
same diversity limit. This strategy dramatically reduces the total size
of the final library by minimizing or eliminating undesired amino
acid inclusion at a given position. Despite these advantages, the sim-
plification of the DC design problem used by SwiftLib eliminates its
ability to account for covariation. Moreover, while SwiftLib allows
for the use of multiple degenerate DNA templates, it does not ac-
count for a gap and, therefore, lacks the ability to encode mixed-
length libraries.

Here, we present degenerate codon design (DeCoDe), an algo-
rithm for total-library DC optimization based on ILP that simultan-
eously addresses three critical gaps in current algorithmic solutions
to DC library design: (i) direct accounting for high-order covari-
ation, (ii) optimization over mixed-length libraries and (iii) inclusion
of multiple degenerate DNA templates to cover more proteins of the
input library under experimental constraints. For small libraries (up
to a hundred proteins with a dozen of variable positions), DeCoDe
often achieves optimal library designs in a reasonable amount of
time (hours to days). For larger libraries, DeCoDe will output a feas-
ible solution after a given time limit, and will report the gap between
the current best number of targets covered and an upper bound on
the optimal design. Because of its distinct advantages, we expect
DeCoDe to be applicable to numerous protein engineering chal-
lenges including library design for directed evolution, reconstruction
of ancestral protein states and high-throughput biochemical
analysis.

A B C

Fig. 1. Examples of covariation structures within protein target sets (top row). For each covariation pattern, an optimal library was generated with a total size limit of six

DNA sequences. The amino acid sequences encoded by this optimized library are shown (bottom row) and the corresponding library quality, as measured by the number of tar-

get sequences covered, is shown below each optimized library. (A) A set with two independently varying positions. The DC library generated for this set of sequences codes all

six targets. (B) A set with two covarying positions. The DC library generated for this set of sequences codes only four of the six targets. The third variable position is not degen-

erate in the optimal library. (C) A set with multiple covarying positions and an indel mutation. The DC library generated for this set of sequences codes only three of the six tar-

gets. By adding a second sublibrary, the indel mutation is handled by templates with different lengths and the total coverage is five targets

3358 T.C.Shimko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024



2 Materials and methods

2.1 Preliminaries
We start with a few formal definitions that will aid in the problem
definition and ILP formulation. A list of notations, proofs support-
ing all ILP constraints, and the complete ILP formulations can be
found in the Supplementary Material.

Definition 1. An amino acid sequence is a string over the amino acid
alphabet RAA plus a gap character indicating the absence of an
amino acid at a given position.

Definition 2. A codon is a DNA triplet coding a single amino acid or
stop or a gap character indicating the absence of a DNA triplet at a
given position.

Definition 3. A degenerate nucleotide represents a subset of
fA;C;G;Tg.

In general, a symbol in an alphabet is said to be degenerate if it
represents a set of symbols within the same alphabet and that set has
a cardinality >1. Nucleotide degeneracy allows DNA molecules to
be synthesized with a mixture of nucleotides at one or more speci-
fied positions, giving direct rise to DCs.

Definition 4. A degenerate codon is a triple of degenerate nucleoti-
des and, thus, codes a subset of RAA.

Whereas a non-DC codes one and only one amino acid residue
or stop, a DC can code multiple amino acids or stops by represent-
ing a mixture of non-DCs. If we denote the DNA triplets represented
by DC x as spanDNAðxÞ, then, x covers non-DC c if and only if
c 2 spanDNAðxÞ.

Definition 5. A DC covers the DNA triplets represented by it and
codes the amino acids they code.

If we denote the amino acids encoded by DC x by spanAAðxÞ,
then, x codes a if and only if a 2 spanAAðxÞ.

Definition 6. A sequence of DCs, a degenerate template
T ¼ ft1; . . . ; tPg, codes a sequence of amino acids A ¼ fa1; . . . ; aPg
if and only if ap 2 spanAAðtpÞ81 � p � P.

A sequence of DCs can be assembled to cover a DNA library cod-
ing a large number of protein sequences. We denote by spanAAðTÞ the
set of amino acid sequences coded by degenerate template T.

Definition 7. spanDNAðTÞ of degenerate template T is called a sublibrary.

We note that the cardinality of spanDNAðTÞ will grow exponen-
tially with the number of DCs included in T, quickly outstripping
the capacity of all available experimental screening methods.
Therefore, it is necessary to constrain the maximum number of non-
degenerate DNA sequences produced, i.e. limit the cardinality of
spanDNAðTÞ.

Definition 8. A library is made up of one or more sublibraries, each
covered by a single degenerate template Tj. Formally, a library is
denoted by [j spanDNAðTjÞ.

By grouping similar sequences together in a sublibrary, each cov-
ered by a single degenerate template, then combining the sublibra-
ries to generate the final library, more protein sequences can be
encoded under the same DNA diversity limit.

2.2 Problem definition
We define our problem as that of taking a set of desired protein
sequences and producing a degenerate template coding as many of
those sequences as possible while limiting the total number of DNA
sequences covered as shown in Figure 1A and B. We explicitly con-
sider only the variable positions in an alignment of protein sequen-
ces. Fixed positions are removed as the optimal solution to cover
them is any of the non-DCs covering that amino acid. These posi-
tions do not grow the size of the output library.

2.2.1 Max-coverage degenerate single-template design

• INSTANCE:
• Set S of aligned amino acid sequences fSig varying at P positions

and DNA library size limit M.
• VALID SOLUTION:
• Template T with at most P degenerate positions s.t.

jspanDNAðTÞj � M.
• GOAL:
• Maximize jspanAAðTÞ \ Sj.

Optionally, we allow the library to be constructed as a combination
of smaller sublibraries (Fig. 1C), each covered by a single degenerate
template, and coding a fraction of the total number of targeted pro-
teins. By using multiple sublibraries, the overall quality of the opti-
mized library, measured as the total number of target sequences
covered, can be increased while the total number sequences gener-
ated remains under the same limit.

2.2.2 Max-coverage degenerate multi-template design

• INSTANCE:
• Set S of aligned amino acid sequences fSig varying at P positions,

DNA library size limit M and number of degenerate templates J.
• VALID SOLUTION:
• A set of degenerate templates fT1; . . . ;TJg, each with at most P

degenerate positions, such that
PJ

j¼1 jspanDNAðTjÞj � M.

• GOAL:
• Maximize j[J

j¼1spanAAðTjÞ \ Sj.

Proteins of multiple lengths are allowed only in the multiple tem-
plate design, as a single degenerate template codes for proteins of
only one specific length. By using x gap codons in a template with at
most P degenerate positions, the template will have at most P – x de-
generate positions and the length of the produced proteins will be
reduced by x.

As noted by Parker et al. (2011), it follows from the NP-
hardness of the protein design problem (Pierce and Winfree, 2002)
that the design of degenerate templates to cover aligned sequences
varying non-independently at multiple positions is NP-hard (for
reader convenience, we provide a proof in the Supplementary
Material). This finding holds whether designing a single template or
multiple degenerate templates. Consequently, we devise a solution
to this problem using ILP. ILP is a method with efficient solvers that
has previously been applied to solve various NP-hard problems in
numerous domains, including computational biology. Examples in-
clude the gene duplication problem (Chang et al., 2011) and instan-
ces of the DC design problem considering pairwise sequence
propensities (Parker et al., 2011).

2.3 MC-DSTD: single library formulation
We first present a solution to the problem in which we cover the in-
put set using only a single sublibrary (one degenerate template). This
restriction simplifies the calculation of the total produced library
size jspanDNAðTÞj, which ordinarily requires multiplication of inde-
pendent variables, an operation that is disallowed in linear
programs.

2.3.1 Objective

To address this problem, we introduce the objective function:

max
X

i

si;

where i indexes an indicator variable such that si denotes whether
target protein sequence Si in target set S can be translated from the
set of DNA sequences covered by T. Formally,
si ¼ 1() Si 2 spanAAðTÞ. By optimizing for inclusion of full-length

DeCoDe: degenerate codon design 3359

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data


sequences, DeCoDe implicitly captures covariation structures within
the library (Fig. 1B and C).

2.3.2 Single DC per position constraint

We introduce the variable Yjpd where j denotes the index of the de-
generate template, p denotes the position of the DC in the degener-

ate template and d denotes the use of the dth DC at that specified
position. In the max-coverage degenerate single-template design

(MC-DSTD) case, j¼1 as we are only considering the special case
of having a single degenerate template cover the entire library. Upon
the variable Yjpd, we introduce the following constraint:

X

d

Yjpd ¼ 1 1 � j � J; 1 � p � P;

so that only a single DC can be employed at each position of each

degenerate template.

2.3.3 Coverage constraints

We introduce integer matrix D and binary matrix D̂. In matrix D,
Dda corresponds to the number of non-DCs covered by DC d that

code the ath amino acid, gap, or stop. Matrix D̂da is a binary copy
of matrix D where each value D̂da is the evaluated truth of Dda > 0.
Variable Cjpa is an indicator variable for coding the ath amino acid

at position p by degenerate template Tj. Therefore, the following re-
lationship exists between Y and C variables:

Cjpa ¼
X

d

YjpdD̂da

1 � j � J; 1 � p � P; 1 � a � jRAAj:

To indicate whether target sequence Si can be encoded by the
sublibrary set, we introduce variable Xij. Xij indicates whether de-
generate template Tj can code the target protein sequence Si. These

variables are shared between the MC-DSTD and max-coverage de-
generate multi-template design (MC-DMTD) instances and are

introduced here for completeness. In the MC-DSTD instance j ¼ 1
while in the MC-DMTD instance 1 � j � J. We introduce the fol-
lowing constraints upon this variable, where O is defined such that

Oipa is a one-hot encoded representation of target sequence Si:

X

p

X

a

OipaCjpa � Pþ ðPþ 1Þð1�XijÞ � P

1 � i � jSj; 1 � j � JX

p

X

a

OipaCjpa � Pþ ðPþ 1Þð1�XijÞ � 0

1 � i � jSj; 1 � j � J:

Finally, we can impose the following constraints to solve si for

all values of i to ensure that it is covered by at least one degenerate
template in T:

�
P

j Xij þ ðJ þ 1Þsi � J 1 � i � jSj
�
P

j Xij þ ðJ þ 1Þsi � 0 1 � i � jSj :

2.3.4 Total-library size constraint

We note that the calculation of total produced library size,
jspanDNAðTÞj, requires multiplication of the total possible number
of incorporated codons at each position. Because multiplication of

variables is a non-linear operation, we instead calculate the log of
the span of T and introduce the following constraint against the
technology-imposed diversity limit M to ensure that

logðjspanDNAðTÞjÞ � logðMÞ and, therefore jspanDNAðTÞj � M in
the case of a single sublibrary, j ¼ 1:

X

p

X

d

Yjpd log ð
X

a

DdaÞ � log ðMÞ j ¼ 1 :

2.4 MC-DMTD: multiple degenerate templates

extension
To extend the ILP for use with multiple degenerate templates, we
must adjust the calculation of the constraint on the size of the total
produced library. Because this calculation requires a sum of prod-
ucts, it is not trivial to devise a linear solution. Instead, we approxi-
mate the solution by binning the log of the sublibrary size produced
by each degenerate template into discrete bins ranging from size 1 to
size logðMÞ. We then approximate the size of each sublibrary as the
exponentiated value of the upper bound of the bin, thus ensuring
that the calculated approximate sublibrary size is always greater
than or equal to the true sublibrary size across all sublibraries.
Therefore, the constraint that the total-library size must be less than
or equal to the user-defined limit will always hold for a valid solu-
tion of the ILP.

To calculate the appropriate bin for the size of the sublibrary
produced by each degenerate template, we define two constant
vectors U and L such that Un and Ln define the upper and lower
bound of bin n, respectively. We then let variable Qj denote the
log size of the sublibrary spanDNAðTjÞ calculated as
Qj ¼

P
p

P
d Yjpd log ð

P
a DdaÞ. We then introduce a binary-valued

variable Bjn to indicate whether the size of sublibrary j falls into the
range of bin n such that Ln � logðjspanDNAðTjÞjÞ � Un. Upon Bjn,
we place the following constraints:

P
n Bjn ¼ 1 1 � j � JP
n BjnLn � Qj 1 � j � JP
n BjnUn � Qj 1 � j � J

:

Our upper bound on total-library size when combining multiple
sublibraries is therefore calculated as:

X

j

X

n

BjneUn :

The following constraint can be introduced to ensure that the
maximum possible library size when combining multiple sublibra-
ries does not exceed the user-defined limit:

X

j

X

n

BjneUn � M:

2.5 DC table
To reduce unnecessary search over equivalent solutions, we formu-
late the DC table D to minimize the degeneracy of the constructed
DNA library while maintaining access to all subsets of 20 amino
acid residues, stop codons and gaps. Though 3376 possible DCs
exist (153 plus the empty set to account for a gap), many of these
codons are redundant in the amino acids they encode. We therefore
employ and load a pre-generated, non-redundant codon table that
groups all codons covering the same set of amino acids. We select
and return from this set the subset of codons that display the least
degeneracy in nucleic acid space. By removing redundant codons
from the codon table, we reduce the number of possible codon selec-
tions from 3376 to 841. Upon parsing the optimized library,
DeCoDe returns the set of all equivalent DCs, allowing the user to
select the codon best suited to their expression system (e.g. selecting
the DC that encodes the fewest rare Escherichia coli codons).

2.6 Implementation
DeCoDe was implemented in Python using the CVXPY package
(Diamond and Boyd, 2016). All results presented here employed the
Gurobi solver (Gurobi Optimization, 2018), which provides a free
licence to academic users. CVXPY also provides interfaces to most
common alternative ILP solvers including free and open-source
options. All results presented here were run on a server with two
Intel Xeon CPU E5-2630 v4 @ 2.20 GHz CPUs and 256 GB of mem-
ory. Each run of DeCoDe was allocated 12 hyper-threads for the
Gurobi solver and multiple runs were conducted in parallel using

3360 T.C.Shimko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024



GNU Parallel (Tange, 2018). We provide a command-line interface
to DeCoDe at github.com/OrensteinLab/DeCoDe.

3 Results

We sought to apply DeCoDe to a set of library optimization prob-
lems closely mimicking those required for a standard protein engin-
eering project. Specifically, we elected to first benchmark DeCoDe’s
performance against a dataset employed in the initial demonstration
of SwiftLib (Jacobs et al., 2015): covering a set of 200 Rosetta-
designed sequences altering nine surface residues at the interacting
interface of crystal structure 1XBI from the Protein Data Bank
(Suryadi et al., 2005). We then extend our analysis of DeCoDe’s per-
formance by targeting the documented lineage of the Aequorea vic-
toria green fluorescent protein (avGFP) (Prasher et al., 1992). We
refer to these to tasks as ‘1XBI’ and ‘GFP’, respectively. All of the
template sequences and resulting output files presented in the results
below are available in the DeCoDe GitHub repository.

We selected the GFP task as a new benchmark for several rea-
sons. First, avGFP and its laboratory-derived descendants have pro-
vided a critical suite of research tools and, consequently, are the
subject of ongoing research to map the protein’s sequence onto its
functional characteristics (Sarkisyan et al., 2016). Second, the exact
lineage of the entire family of laboratory-derived avGFP variants is
known, making the tasks of sequence alignment and variant identifi-
cation trivial (Lambert, 2019). Third, the high total number of vari-
able sites and the length variation within the protein family causes
this design problem to be particularly challenging or impossible for
existing DC library design algorithms.

For each of these tasks, we measure the quality of the optimized
library by three metrics. The first is the total coverage count of the
input target sequences. The second is the fraction of total target k-
mers covered. The third is the fraction of unique target k-mers cov-
ered. For the last two metrics, we extract all amino acid k-mers,
both contiguous and discontiguous for k ¼ 2, 3, 4, present in the tar-
get sequence set. We then calculate the fraction of the total and
unique k-mers present in each of the optimized libraries, respective-
ly. These secondary metrics better measure the extent to which
lower-order covariation is maintained by each of the optimized
libraries. By measuring total k-mer coverage, we assess the extent to
which each library is able to capture high-abundance, and therefore
theoretically important, covariation structures. In the case of unique
k-mer coverage, we assess the generated library’s ability to explore
the breadth of sequence space, as each unique k-mer represents a po-
tentially novel functional property of the protein. The relative value
of each of these metrics to the user will be a function of the desired
balance between exploiting the known, frequently-occurring k-mer
patterns present in the target library and exploring a larger area of
sequence space through the inclusion of a large number of unique k-
mer patterns.

We compared DeCoDe to an existing DC library design algo-
rithm. As the most recently published method and the only open-
source algorithm allowing multiple DC usage per position, SwiftLib
(Jacobs et al., 2015) represents a natural point of comparison.

3.1 Performance on the 1XBI benchmark
We compared the performance of DeCoDe to that of SwiftLib on
the 1XBI task using both a single sublibrary and four sublibraries
under a library size limit of 3.2 � 108, corresponding to the analo-
gous libraries listed as ‘Problem 1, DP Solution 1’ and ‘Problem 1,
DP Solution 2’, respectively, in the SwiftLib text. When employing
only a single sublibrary, DeCoDe produced an optimized library
identical to the SwiftLib solution. This result is not unexpected as,
for target sequence sets with relatively few variable positions, the
optimal library by SwiftLib’s objective may also be optimal by
DeCoDe’s objective.

However, when the number of sublibraries was increased to 4,
as in SwiftLib’s ‘DP Solution 2’, DeCoDe outperformed SwiftLib
based on both the target coverage and the k-mer coverage criteria.
The DeCoDe library covers 191 of the target input sequences while

the SwiftLib library covers only 173 (Fig. 2A). Beyond the full-
length sequences, DeCoDe was also able to cover a larger fraction of
the total covariation present in the set of target sequences. For all
analyzed values of k, the DeCoDe library covered a greater propor-
tion of the total and unique target library k-mers, indicating that co-
variation is maintained at a higher rate not only in the extreme of
full-length target coverage, but also in lower-order cases (Fig. 2B
and C, respectively).

3.2 Performance on the limited GFP benchmark
We next sought to test the performance of DeCoDe on a more chal-
lenging set of target proteins: the lab-derived lineage of avGFP. The
total set of these avGFP-derived proteins spans several different
lengths, the most common being 238 or 239 amino acids. The two
exceptions include large, unique insertions and were excluded from
our benchmarks since each would need to be ordered as individual,
non-degenerate constructs in any DC library. While DeCoDe per-
mits libraries of varying length, SwiftLib requires all target proteins
to be the same length. To allow for a direct comparison between the
two methods on the GFP benchmark, we therefore subset the GFP
lineage to include only proteins of length 239 amino acids (the most
common length).

We performed library optimization for this reduced target pro-
tein set with both DeCoDe and SwiftLib. As both algorithms are
capable of increasing performance by employing multiple degener-
ate DNA templates, we optimized for a range of library size limits
using either 1 or 2 sublibraries, where each sublibrary represents an
independently synthesized DNA construct. We then measured the
quality of each algorithm’s generated library by the number of full-
length sequences out of the target set of 94 proteins covered by that
DC library and their k-mer coverage.

For library designs comprised of only a single sublibrary, we find
that DeCoDe consistently outperforms SwiftLib in the total number
of target sequences covered for a given library size limit (Fig. 3A).
Across all limits for a single sublibrary, DeCoDe offers an improve-
ment of between 58% and 250%. DeCoDe’s improvement over
SwiftLib is even more apparent when comparing libraries comprised
of two sublibraries (Fig. 3B). For all diversity limits, DeCoDe out-
puts a library that covers more than twice the number of proteins
covered by SwiftLib’s library.

For the k-mer coverage analysis, we find a strong dependence of
DeCoDe’s performance on the number of sublibraries it is allowed

Fig. 2. DeCoDe and SwiftLib performance on the 1XBI benchmark using four subli-

braries. (A) The total number of full-length target sequences covered by each opti-

mized library. (B, C) Comparison of total higher-order covariation. Each point

represents the fraction of total (B) or unique (C) target k-mers covered by the opti-

mized libraries generated by each method. Values of k are indicated by the color of

each point

DeCoDe: degenerate codon design 3361

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024



to use. For instance, SwiftLib outperforms DeCoDe in all cases by
the measure of covering the total target k-mers when using only a
single sublibrary (Fig. 3C, circles). However, the performance of the
two techniques is roughly equivalent across diversity limits when
both methods employ a second sublibrary (Fig. 3C, triangles).

When comparing unique k-mer coverage, we find that DeCoDe
and SwiftLib cover a nearly identical fraction of the target k-mers
when using only a single sublibrary (Fig. 3D, circles). The addition
of a second sublibrary dramatically improves the proportion of
unique target k-mers covered by DeCoDe while offering only a mar-
ginal improvement for SwiftLib (Fig. 3D, triangles). This pattern
holds for the instances of both total and unique k-mer coverage.
Taken together with the full-length target coverage results, these
findings indicate that DeCoDe can better utilize additional sublibra-
ries to cover both high- and low-order covariation and support the
importance of multiple DNA constructs to the performance of
DeCoDe.

The returned total-library sizes for both DeCoDe and SwiftLib
approach, but do not exceed, the user-specified limit
(Supplementary Fig. S1). However, because the problem of linked
variation addressed by DeCoDe is NP-hard, both the runtime
(Supplementary Fig. S2) and memory requirements (Supplementary
Fig. S3) of DeCoDe tend to be much higher than those of SwiftLib.
Since SwiftLib does not attempt to optimize over the problem of co-
variation between multiple sites, the algorithm can find an optimal
solution for its library quality metric in polynomial time.

3.3 Performance on the complete GFP benchmark
In addition to the 94 proteins of length 239 amino acids explored in
the above optimization task, the avGFP family includes 37 addition-
al proteins of length 238 amino acids. Because DeCoDe can employ
multiple sublibraries and the gap codon, it is, to our knowledge, the
first algorithm able to perform total-library optimization for libra-
ries composed of mixed-length protein targets. Here, we use

DeCoDe to optimize a library targeting the set of 131 avGFP-
derived proteins of both 238 and 239 amino acid lengths
(Supplementary Fig. S4).

For this task, we selected a total-library size limit of 107 unique
DNA species. This limit is consistent with yeast-based assays (e.g.
yeast display) frequently used in conjunction with fluorescence-
activated cell sorting to enrich for fluorescent proteins with desirable
properties (Swers et al., 2004). Because the avGFP family is relative-
ly diverse, we explored different sublibrary counts to maximize
coverage under the 107 diversity limit. Specifically, we optimized
libraries comprising 1, 2, 3, 4, 8 and 12 sublibraries. Each sublibrary
represents an additional monetary and labor cost that is, in most
instances, offset by the improved coverage that the sublibraries
achieve under the total diversity limit.

On the computational side, libraries comprised of a high number
of sublibraries will likely require a prohibitively long runtime to
reach a guaranteed optimal solution as each additional sublibrary
further complicates the optimization procedure. Because the prob-
lem of DC design with explicit consideration of full coverage is NP-
hard, no solution, including one based on ILP solvers, can guarantee
a feasible runtime, i.e. terminating in days. To address this issue, we
limited the total runtime to a maximum of 48 h and selected the so-
lution reached by the ILP solver under that time limit. We expect
this time limit to be within reason for researchers since, when added
to the synthesis and delivery time, it represents a total turnaround
time from design to delivery of roughly 1 week through existing
commercial sources. In practice, the user is free to set any time limit
they deem appropriate.

The inclusion of additional sublibraries dramatically improved
overall coverage of the lineage tree (Supplementary Fig. S5) while
keeping the total-library diversity under the 107 limit
(Supplementary Fig. S6). When only a single sublibrary is used,
DeCoDe outputs an optimal library. However, this library only cov-
ers 32 of the 131 target sequences and all of the covered sequences
are of length 239. When 2 additional sublibraries are added (for a

Fig. 3. Comparison of full-length target and k-mer coverage by DeCoDe and SwiftLib on the target sequence set of 94 avGFP-descended target proteins of length 239 amino

acids, where 73 positions are variable between proteins. (A, B) Total targets covered for libraries comprised of one sublibrary and two sublibraries, respectively. (C, D)

Fraction of total and unique target k-mers covered. Various library sizes are denoted by color and the use of one or two sublibraries is denoted by shape

3362 T.C.Shimko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data


total of 3), the library produced by DeCoDe covers 66 proteins, or
just over half of all sequences in the lineage. This 3-member library
begins to cover sequences of length 238 with diverse functions,
including CFP and BFP. With 12 sublibraries, DeCoDe covers 121
of the 131 total target sequences while generating only 7 640 832
total DNA sequences, which is well within the range of modern
DNA synthesis techniques. With this library, nearly all of the signifi-
cant functional variants are covered. As expected, there is a positive
correlation between the number of sublibraries included and the
runtime (Supplementary Fig. S7) and maximum memory usage
(Supplementary Fig. S8) for each optimization problem.

While we were able to obtain guaranteed optimal solutions for
the case of 1 and 2 sublibraries, we were unable to obtain optimality
guarantees for the libraries comprising 3, 4, 8 and 12 sublibraries
under the 48-h time limit. However, solutions tend to rapidly im-
prove on the objective function and yield diminishing returns with
increased runtimes (Supplementary Fig. S9). The ILP solver computes
an upper bound for the value of the optimal solution for each point
during the run, which can inform the user how far the current library
is from a theoretical optimum. Given these findings, we suggest that
DeCoDe is unlikely to significantly improve on the presented results
with increased time and that reaching a guaranteed optimal solution
may require a dramatic increase in runtime, perhaps weeks, months,
or even longer for the more challenging library designs.

4 Discussion

The synthesis of large, protein-coding DNA libraries is a necessary
step for high-throughput protein-screening assays. This synthesis
step often incurs a high cost, even for libraries of closely related
genes. Many research groups have focused significant efforts on
reducing this prohibitive cost through innovations in software
(Jacobs et al., 2015; Mena and Daugherty, 2005; Parker et al.,
2011), hardware (LeProust et al., 2010; Oling et al., 2018), or chem-
istry (Plesa et al., 2018). Among these techniques, DC libraries stand
out as a particularly attractive method, as they can cover large
swaths of sequence space without a proportional rise in synthesis
cost. However, existing DC library design solutions lack the ability
to account for linked variation, multiple protein lengths or both.
DeCoDe was written with careful consideration of both linked and
length variation, making it a particularly useful solution for a variety
of DC library design tasks.

Covariation between amino acid positions underlies the evolu-
tionary structure of protein families. Naturally evolved proteins rely
on evolutionarily conserved, interconnected networks of residue
interactions to carry out their functions (Halabi et al., 2009;
Lockless and Ranganathan, 1999; Socolich et al., 2005). These net-
works can often be disrupted by even a single amino acid change if
that change is non-conservative in a necessary physical property
(Goldberg and Wittes, 1966). Several research groups have
exploited the preservation of these networks over time to recon-
struct ancestral protein lineages and better understand the link be-
tween protein sequence, structure and function (Lim et al., 2016; Shi
and Yokoyama, 2003; Thornton et al., 2003). Due to the highly cor-
related, chemically conserved sequence patterns present in these
reconstructed lineages, DeCoDe offers an attractive solution to the
problem of synthesizing the complete protein family for functional
testing simultaneously.

Expansions or reductions in protein domain lengths represent
another type of variation with significant implications for protein
function (Brocchieri and Karlin, 2005). As an example, size differen-
ces in the complementarity-determining regions of immunoglobulin
proteins can differentiate success and failure of antigen binding
(Teplyakov and Gilliland, 2014). Because DeCoDe can simultan-
eously optimize constructs of various lengths under a single library
size constraint, it is ideal for generating DC libraries to screen im-
munoglobulin proteins for specific, desired binding properties.

While DeCoDe can tackle these previously untenable challenges,
DeCoDe’s direct solution for the linked variation problem can re-
quire significant computational resources. We implemented two fea-
tures to overcome this limit. The first is the use of a non-redundant

codon table in the ILP formulation, which reduces the number of
constraints and variables to consider. The second is a user-defined
limit on the runtime of the ILP solver. While the ILP may not find an
optimal solution with limited runtime, it will output a feasible solu-
tion that may be very close to the optimum.

The utility of DeCoDe optimized libraries depends heavily on
the method used to define the target sequences in the input set.
Historically, targeted protein library design has relied on the expert-
ise of trained biochemists. However, beginning in the early 2000s,
computational methods for linking protein sequence to function
started to emerge. Initial methods, such as those underpinning the
software suite Rosetta, employed biophysical models of protein
structure and enabled computational design of hundreds to thou-
sands of protein variants prior to experimental screening (Kuhlman
et al., 2003; Leaver-Fay et al., 2011). More recent developments em-
ploy machine learning to rapidly predict the function of a novel pro-
tein sequence without the computational expense of simulating
protein dynamics (Cadet et al., 2018; Saito et al., 2018; Wu et al.,
2019). All of these methods have shown promise for the task of pro-
tein design when used appropriately. Here, we explored two sets of
input sequences with a high likelihood of containing functional var-
iants: one designed by the industry standard protein modeling tool
Rosetta (1XBI) and one based on an existing protein family with ex-
perimentally verified functional properties (GFP). Ultimately, it is
up to the user to ensure that the method being used to generate tar-
gets can effectively predict and return functional protein sequences
to include in the target set.

DeCoDe-generated libraries will be most useful when coupled
with high-throughput screening methods, as many functional var-
iants may reside in the sequence space covered by the optimized li-
brary but not specifically present in the target set. When used in this
manner, DeCoDe-generated libraries stand to make a significant im-
pact in the field of protein engineering, as they have the capacity to
more efficiently screen sequence space for functional variants.
Future extensions of DeCoDe could include optimization of the
PCR assembly process necessary to generate long protein-coding
constructs. Such an implementation could potentially allow even
better capture of local covariation structures within the sequence li-
brary and generate combinatorially-assembled libraries that have
been proven useful in directed evolution experiments.

Acknowledgements

T.C.S. acknowledges travel support from the Prof. Rahamimoff Travel Grant

Program of the United States-Israel Binational Science Foundation (BSF).

T.C.S. acknowledges the support of an NSF Graduate Research Fellowship.

P.M.F. is a Chan Zuckerberg Biohub Investigator and acknowledges the sup-

port of an Alfred P. Sloan Foundation Fellowship.

Funding

This work was supported by the National Institutes of Health [DP2-GM-

123641 to P.M.F.].

Conflict of Interest: none declared.

References

Agresti,J.J. et al. (2010) Ultrahigh-throughput screening in drop-based micro-

fluidics for directed evolution. Proc. Natl. Acad. Sci. USA, 107, 4004–4009.

Arkin,A.P. and Youvan,D.C. (1992) Optimizing nucleotide mixtures to en-

code specific subsets of amino acids for semi-random mutagenesis. Nat.

Biotechnol., 10, 297–300.

Barbas,C.F. et al. (1991) Assembly of combinatorial antibody libraries on

phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA, 88, 7978–7982.

Beaucage,S.L. and Caruthers,M.H. (1981) Deoxynucleoside phosphorami-

dites – a new class of key intermediates for deoxypolynucleotide synthesis.

Tetrahedron Lett., 22, 1859–1862.

Boder,E.T. and Wittrup,K.D. (1997) Yeast surface display for screening com-

binatorial polypeptide libraries. Nat. Biotechnol., 15, 553–557.

DeCoDe: degenerate codon design 3363

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa162#supplementary-data


Brocchieri,L. and Karlin,S. (2005) Protein length in eukaryotic and prokaryot-

ic proteomes. Nucleic Acids Res., 33, 3390–3400.

Cadet,F. et al. (2018) A machine learning approach for reliable prediction of

amino acid interactions and its application in the directed evolution of enan-

tioselective enzymes. Sci. Rep., 8, 16757.

Chang,W.-C. et al. (2011) An ILP solution for the gene duplication problem.

BMC Bioinformatics, 12, S14.

Diamond,S. and Boyd,S. (2016) CVXPY: a python-embedded modeling lan-

guage for convex optimization. J. Mach. Learn. Res., 17, 221–264.

Eisenmesser,E.Z. et al. (2005) Intrinsic dynamics of an enzyme underlies ca-

talysis. Nature, 438, 117–121.

Freudl,R. et al. (1986) Cell surface exposure of the outer membrane protein

OmpA of Escherichia coli K-12. J. Mol. Biol., 188, 491–494.

Goldberg,A.L. and Wittes,R.E. (1966) Genetic code: aspects of organization.

Science, 153, 420–424.

Gurobi Optimization,L. (2018) Gurobi Optimizer Reference Manual. http://

www.gurobi.com (13 August 2019, date last accessed).

Halabi,N. et al. (2009) Protein sectors: evolutionary units of

three-dimensional structure. Cell, 138, 774–786.

Jacobs,T.M. et al. (2015) SwiftLib: rapid degenerate-codon-library optimiza-

tion through dynamic programming. Nucleic Acids Res., 43, e34.

Kuhlman,B. et al. (2003) Design of a novel globular protein fold with

atomic-level accuracy. Science, 302, 1364–1368.

LaBean,T.H. and Kauffman,S.A. (1993) Design of synthetic gene libraries

encoding random sequence proteins with desired ensemble characteristics.

Protein Sci., 2, 1249–1254.

Lambert,T.J. (2019) FPbase: a community-editable fluorescent protein data-

base. Nat. Methods, 16, 277–278.

Leaver-Fay,A. et al. (2011) ROSETTA3: an object-oriented software suite for

the simulation and design of macromolecules. Methods Enzymol., 487,

545–574.

LeProust,E.M. et al. (2010) Synthesis of high-quality libraries of long

(150mer) oligonucleotides by a novel depurination controlled process.

Nucleic Acids Res., 38, 2522–2540.

Lim,S.A. et al. (2016) Evolutionary trend toward kinetic stability in the folding

trajectory of RNases H. Proc. Natl. Acad. Sci. USA, 113, 13045–13050.

Lockless,S.W. and Ranganathan,R. (1999) Evolutionarily conserved pathways

of energetic connectivity in protein families. Science, 286, 295–299.

Mena,M.A. and Daugherty,P.S. (2005) Automated design of degenerate codon

libraries. Protein Eng. Des. Sel., 18, 559–561.

Motlagh,H.N. et al. (2014) The ensemble nature of allostery. Nature, 508,

331–339.

Oling,D. et al. (2018) Large scale synthetic site saturation GPCR libraries re-

veal novel mutations that alter glucose signaling. ACS Synth. Biol., 7,

2317–2321.

Parker,A.S. et al. (2011) Optimization of combinatorial mutagenesis.

J. Comput. Biol., 18, 1743–1756.

Pierce,N.A. and Winfree,E. (2002) Protein design is NP-hard. Protein Eng.,

15, 779–782.

Plesa,C. et al. (2018) Multiplexed gene synthesis in emulsions for exploring

protein functional landscapes. Science, 359, 343–347.

Prasher,D.C. et al. (1992) Primary structure of the Aequorea victoria

green-fluorescent protein. Gene, 111, 229–233.

Roberts,R.W. and Szostak,J.W. (1997) RNA-peptide fusions for the in vitro

selection of peptides and proteins. Proc. Natl. Acad. Sci. USA, 94,

12297–12302.

Rockberg,J. et al. (2008) Epitope mapping of antibodies using bacterial sur-

face display. Nat. Methods, 5, 1039–1045.

Romero,P.A. et al. (2015) Dissecting enzyme function with microfluidic-based

deep mutational scanning. Proc. Natl. Acad. Sci. USA, 112, 7159–7164.

Saito,Y. et al. (2018) Machine-learning-guided mutagenesis for directed evolu-

tion of fluorescent proteins. ACS Synth. Biol., 7, 2014–2022.

Sarkisyan,K.S. et al. (2016) Local fitness landscape of the green fluorescent

protein. Nature, 533, 397–401.

Schultz,S.C. and Richards,J.H. (1986) Site-saturation studies of

beta-lactamase: production and characterization of mutant beta-lactamases

with all possible amino acid substitutions at residue 71. Proc. Natl. Acad.

Sci. USA, 83, 1588–1592.

Shi,Y. and Yokoyama,S. (2003) Molecular analysis of the evolutionary signifi-

cance of ultraviolet vision in vertebrates. Proc. Natl. Acad. Sci. USA, 100,

8308–8313.

Smith,G. (1985) Filamentous fusion phage: novel expression vectors that dis-

play cloned antigens on the virion surface. Science, 228, 1315–1317.

Socolich,M. et al. (2005) Evolutionary information for specifying a protein

fold. Nature, 437, 512–518.

Suryadi,J. et al. (2005) The crystal structure of the Methanocaldococcus janna-

schii multifunctional L7Ae RNA-binding protein reveals an induced-fit

interaction with the box C/D RNAs. Biochemistry, 44, 9657–9672.

Swers,J.S. et al. (2004) Shuffled antibody libraries created by in vivo homolo-

gous recombination and yeast surface display. Nucleic Acids Res., 32, e36.

Tabuchi,I. et al. (2001) An in vitro DNA virus for in vitro protein evolution.

FEBS Lett., 508, 309–312.

Tange,O. (2018) GNU Parallel 2018. 1st edn. Lulu Press, Inc., Morrisville,

NC.

Teplyakov,A. and Gilliland,G.L. (2014) Canonical structures of short

CDR-L3 in antibodies. Proteins, 82, 1668–1673.

Thornton,J.W. et al. (2003) Resurrecting the ancestral steroid receptor: an-

cient origin of estrogen signaling. Science, 301, 1714–1717.

Wolf,E. and Kim,P.S. (1999) Combinatorial codons: a computer program to

approximate amino acid probabilities with biased nucleotide usage. Protein

Sci., 8, 680–688.

Wu,Z. et al. (2019) Machine learning-assisted directed protein evolution with

combinatorial libraries. Proc. Natl. Acad. Sci. USA, 116, 8852–8858.

3364 T.C.Shimko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/11/3357/5807608 by guest on 06 February 2024

http://www.gurobi.com
http://www.gurobi.com

	l
	l

