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Transcription factors (TFs) are primary regulators of gene expres-
sion in cells, where they bind specific genomic target sites to
control transcription. Quantitative measurements of TF–DNA
binding energies can improve the accuracy of predictions of TF
occupancy and downstream gene expression in vivo and shed
light on how transcriptional networks are rewired throughout
evolution. Here, we present a sequencing-based TF binding assay
and analysis pipeline (BET-seq, for Binding Energy Topography
by sequencing) capable of providing quantitative estimates of
binding energies for more than one million DNA sequences in
parallel at high energetic resolution. Using this platform, we mea-
sured the binding energies associated with all possible combina-
tions of 10 nucleotides flanking the known consensus DNA tar-
get interacting with two model yeast TFs, Pho4 and Cbf1. A large
fraction of these flanking mutations change overall binding ener-
gies by an amount equal to or greater than consensus site muta-
tions, suggesting that current definitions of TF binding sites may
be too restrictive. By systematically comparing estimates of bind-
ing energies output by deep neural networks (NNs) and biophys-
ical models trained on these data, we establish that dinucleotide
(DN) specificities are sufficient to explain essentially all variance in
observed binding behavior, with Cbf1 binding exhibiting signifi-
cantly more nonadditivity than Pho4. NN-derived binding ener-
gies agree with orthogonal biochemical measurements and reveal
that dynamically occupied sites in vivo are both energetically and
mutationally distant from the highest affinity sites.

protein–DNA binding | transcription factor binding | transcription factor
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Gene expression is extensively regulated by transcription fac-
tors (TFs) that bind genomic sequences to activate or

repress transcription of target genes (1). The strength of binding
between a TF and a given DNA sequence at equilibrium depends
on the change in Gibbs free energy (∆G) of the interaction (2–
5). Thermodynamic models that explicitly incorporate quantita-
tive binding energies more accurately predict occupancies, rates
of transcription, and levels of gene expression in vivo (4, 6–11).
In addition, binding energy measurements for TF–DNA interac-
tions can provide insights into the evolution of regulatory net-
works. Unlike coding sequence variants that manifest at the pro-
tein level to influence fitness, noncoding TF target site variants
affect phenotype by modulating the binding energies of these
interactions to affect gene expression (12–14). Understanding
how TFs identify their cognate DNA target sites in vivo and how
these interactions change during evolution therefore requires the
ability to accurately estimate binding energies for a wide range of
sequences.

Most high-throughput efforts to develop accurate models
of TF binding specificity have focused on mutations within
known TF target sites that dramatically change binding energies.

However, even subtle changes in binding energies can have
dramatic effects on both occupancy and transcription (15–18).
Sequences surprisingly distal from a known consensus motif can
affect affinities and levels of transcription (19–22), and genomic
variants in regulatory regions outside of known transcription
factor binding sites (TFBSs) may be subject to nonneutral evo-
lutionary pressures (23). Therefore, understanding the funda-
mental mechanisms that regulate transcription requires mea-
surement of binding energies at sufficient resolution to resolve
even small effects.

Despite the utility of comprehensive binding energy measure-
ments, existing methods often lack the energetic resolution and
scale required to yield such datasets. Currently, three dominant
technologies are used to query DNA specificities: methods based
on systematic evolution of ligands by exponential enrichment
(SELEX) (24–29), protein binding microarrays (PBMs) (30, 31),
and mechanically induced trapping of molecular interactions
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(MITOMI) (32, 33). SELEX-based methods require repeated
enrichment and amplification cycles followed by low depth
sequencing of the enriched TF-bound material. Thus, these meth-
ods are optimized to identify the highest affinity substrates from
extremely large random populations but fail to detect weakly
bound sequences or measure their affinities. Although PBMs
quantify the binding of TFs to DNA microarrays using a fluo-
rometric readout with a broad dynamic range, the precise rela-
tionship between measured fluorescence intensities and binding
energies is unclear because PBMs require wash steps that dis-
rupt binding equilibrium. In addition, PBM arrays usually con-
tain many replicates for each sequence, limiting the number of
distinct sequences probed to ∼50,000. The MITOMI platform,
based on mechanical trapping by microfluidic valves, enables
high-resolution measurements of concentration-dependent bind-
ing to yield absolute affinities, but throughput is limited to sev-
eral hundred sequences. Recent iterations of MITOMI-based
assays have addressed throughput limitations by using mas-
sively parallel sequencing to increase sequence space coverage
but at the cost of resolving binding energies (29, 34). High-
throughput sequencing–fluorescent ligand interaction profiling
(HiTS-FLIP) couples massively parallel sequencing with the abil-
ity to perform concentration-dependent binding measurements;
however, adoption of this technology has been limited by the
requirement for extensively customized sequencing hardware
(35). Taken together, these TF–DNA binding assays can sam-
ple vast sequence spaces, but it remains challenging to simul-
taneously measure binding energies at the scale and resolution
necessary to derive complete landscapes.

The most popular and widely used models represent TF
specificities as a position weight matrix (PWM), in which each
nucleotide at each position contributes additively and indepen-
dently to overall binding energies (36). These mononucleotide
(MN) models are easily implemented, visualized, and interpreted
and provide useful approximations of binding specificity for
the majority of studied TFs (9, 37–39). However, PWM-based
models fail to capture nonadditivity between nucleotides, which
can lead to inaccurate predictions, particularly for low-affinity
sites (32, 40). This approximation can be refined by including
contributions of higher order sequence features, such as dinu-
cleotides (DNs) or longer k-mers (41–50). Recently developed
models predict binding based on local DNA shape using struc-
tural parameters (e.g., minor groove width, propeller twist, heli-
cal twist, and roll) (51–55). However, these biophysical variables
are determined by primary sequence, rendering the relation-
ship between the two somewhat degenerate. Deep neural net-
work (NN)-based models can learn complex patterns from large
datasets across many applications, including predicting the func-
tion of noncoding genomic sequences (56). Training NN models
on large sets of binding data therefore has the potential to yield
accurate, high-resolution estimates of binding at a per-sequence
level, revealing local topography of binding energy landscapes.

To address the need for technologies capable of high-
throughput thermodynamic measurements, we developed BET-
seq (Binding Energy Topography by sequencing), an integrated
sequencing assay and analysis pipeline that yields relative and
absolute binding energies (∆∆G and ∆G, respectively) for >1
million sequences in parallel, even for relatively small ener-
getic differences. Using Monte Carlo simulations to mimic the
effects of stochastic sampling noise on energetic resolution, we
establish guidelines for the sequencing depth required to resolve
accurate binding energies for libraries of different sizes and
expected energy ranges. We then deployed this assay to measure
comprehensive and quantitative binding energy landscapes for
>1 million mutations surrounding the known consensus motif
for two model yeast TFs (Pho4 and Cbf1). Deep NN mod-
els that incorporate all possible higher order, nonadditive con-
tributions were then trained on these large datasets to yield

high-resolution estimates of binding energy for each sequence.
Comparisons to orthogonal biochemical affinity measurements
established that NN predictions are highly quantitative, accu-
rately predicting measured binding energies over a range of
3 kcal/mol. A surprisingly large number of flanking sequences
have effects on binding energies as great or greater than muta-
tions in the core, suggesting that current definitions of TFBSs are
too restrictive and may limit accurate predictions of TF occu-
pancy in vivo. Comparisons between NN predictions and pre-
dictions from a series of biophysically motivated models reveal
that DN specificity preferences explain nearly all observed bind-
ing behavior, with Cbf1 exhibiting significantly more nonaddi-
tivity than Pho4. Strikingly, most dynamically occupied target
loci for both Pho4 or Cbf1 are mutationally distant from the
energetically optimal flanking sequence, providing evidence of
evolutionary molecular selection for near-neutral effects on
binding energies. These data demonstrate the utility of our high-
throughput approach to measure binding energies and model
determinants of substrate specificity required to understand bio-
logical behaviors. Furthermore, this assay and analysis pipeline
may be extended to a wide variety of TFs, improving predictive
models of TF–DNA affinities across species.

Results
A Microfluidic Approach Using High-Throughput Sequencing (HTS) to
Derive Comprehensive Binding Affinity Landscapes. We sought to
develop an assay that significantly extends the scale at which TF–
DNA interactions can be probed while maintaining the ability to
quantitatively measure binding energies at high resolution. TF–
DNA interactions can be considered a two-state system, such
that the affinity of a given interaction can be determined by the
equilibrium partitioning of sequences into bound and unbound
states:

∆G =−RT ln

(
[TF ·DNAbound ]

[TFunbound ][DNAunbound ]

)
.
Several groups have established that molecular counting of indi-
vidual DNA molecules via HTS can reliably measure bound and
input concentrations for each species (10, 40, 57). These assays
generally use electromobility shift assays (EMSAs) to isolate
bound material. However, TF–DNA complexes are not at chem-
ical equilibrium during the electrophoresis step, and complexes
with particularly fast dissociation rates may be underrepresented
within the bound fraction, leading to a systematic underesti-
mation of weak affinity interactions (58). To address this, we
used a microfluidic device incorporating pneumatic valves with
fast (∼100 ms) actuation times to mechanically “trap” DNA
associated with TF proteins at equilibrium (29, 32–34) (Fig.
1A). This device requires small amounts of DNA substrate and
expressed protein, eliminating the need for cell-based protein
production. Antibody-patterned surfaces within the device cap-
ture monomeric enhanced GFP (meGFP)-tagged TFs produced
via in vitro transcription/translation before washing, purifying
TFs in situ. After TF capture, libraries of DNA sequences are
introduced and allowed to interact with surface-immobilized TFs
until equilibrium is reached. Mechanical valves then sequester
TF-bound DNA sequences, making it possible to wash out
unbound material without loss of weak interactions (32, 33, 59)
(Fig. 1B). Bound DNA species can then be eluted from the
device and quantified using HTS (Fig. 1C).

As a first application of BET-seq, we focused on two model
TFs from Saccharomyces cerevisiae, Pho4 and Cbf1. Although
Pho4 and Cbf1 bind the same CACGTG variant of the six-
nucleotide enhancer-box (E-box) motif both in vitro and in vivo
(16, 18, 28, 60–62), they bind largely nonoverlapping sets of
genomic loci and regulate distinct target genes (19, 63). To
comprehensively probe how flanking nucleotides affect Pho4
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Fig. 1. DNA library design and assay overview. (A) Schematic of flanking sequence library design indicating Illumina sequencing adapters (blue), unique
molecular identifiers (UMIs, red), variable flanking regions (orange), and E-box consensus. (B) Photograph of MITOMI device and schematic showing device
operation. (C) Schematic showing downstream sample analysis. Counting of individual molecules within bound and input fractions allows calculation of
relative binding energies for each sequence (Left and Middle) to yield a comprehensive thermodynamic binding affinity landscape (Pho4 example). Each
color-coded point (blue = –∆∆G; red = +∆∆G) represents a sequence, grouped by Hamming distance from the highest affinity sequence and alphabetically
ordered in clockwise polar coordinates.

and Cbf1 binding affinities, we designed a library of 1,048,576
sequences in which the core E-box sequence was flanked by
all possible random combinations of five nucleotides upstream
and downstream, embedded within a constant sequence shown
to exhibit negligible binding (33) (Fig. 1A). Constant sites at
the 5′ and 3′ ends allowed simultaneous PCR amplification and
incorporation of Illumina adapters. UMIs included within each
sequence allowed accurate counting of library species even in the
presence of PCR bias (64). Each UMI barcode was segmented
and interspersed along the library sequence to prevent formation
of an additional CACGTG consensus site. After sequencing, rel-
ative binding affinities (∆∆Gs) were calculated for all sequences
by considering relative enrichment of individual DNA species,
thereby generating a comprehensive binding affinity landscape
(example shown in Fig. 1C).

Assay Simulations Determine Sequencing Depth Requirements for
Binding Affinity Measurements. Accurately estimating concentra-
tions of DNA in TF-bound and input samples via sequencing
requires that measured read counts reflect true abundances.
However, read counts can be distorted by stochastic sampling
error, particularly for low read count numbers (65, 66). To under-
stand how stochastic sampling error depends on read depth,
library size, and the expected range of binding energies across
library sequences, we considered a previously published exper-
iment that quantified interactions between the Escherichia coli
LacI repressor and a library of 1,024 binding site variants via
deep sequencing (40). Each sequence was sampled with roughly
103 reads per species, yielding ∆∆G measurements with neg-
ligible sampling noise. To understand how read depth affects
recovery of accurate ∆∆G measurements, we down-sampled
these data to simulate lower sequencing depths of 102-106 reads,
split evenly between bound and input fractions (ca. 0.05–5,000
reads per sequence). We then assessed the accuracy of recovered
∆∆G values at these lower sequencing depths by calculating
the squared Pearson’s correlation coefficient (r2) between ∆∆G
values for each species calculated from down-sampled data and
published values calculated from the full dataset. To minimize
the effect of a few high accuracy values dominating the correla-
tion statistic, each r2 was normalized by the fraction of observed
species (Fig. 2A). For this 1,024-species library with binding ener-
gies that span ∼3 kcal/mol, ∼2× 105 total reads (∼100 reads per

sequence) were sufficient to recover highly accurate ∆∆G values
for every sequence.

Measuring accurate ∆∆Gs for a 1,048,576 species library rep-
resents a 1,000-fold increase in scale from these prior experi-
ments. To understand more generally the determinants of ∆∆G
measurement accuracy, we generated a simulated test set of true
relative binding energies and implemented Monte Carlo sim-
ulations to mimic stochastic sampling during HTS. For given
library sizes, sequencing depths, and binding energy ranges, we
again calculated the correlation coefficient between calculated
∆∆G values and true values. As expected, accuracy improves
and library coverage expands with increasing sequencing depth
(Fig. 2B and SI Appendix, Figs. S1 and S2). As the range of
expected binding energies increases, accuracy improves but the
fraction of sequences observed from the input library decreases.
Nearly all existing motif discovery libraries used in SELEX-seq,
MITOMI-seq, and SMiLE-seq experiments probe on the order
of 1018–1024 species with read depths of several thousand total
reads. These simulations establish that such sparse sequencing
will sample only the highest affinity sequences, representing an
infinitesimal fraction of the input library.

To delineate conditions under which unbound concentra-
tions can be approximated by sequencing the input library,
reducing assay cost, we modeled the distribution of “appar-
ent” per-sequence ∆∆Gs for a given population of sequences
under competitive binding conditions in which we explicitly con-
sider effects of ligand depletion. These simulations consider
the total number of library sequences, respective concentra-
tions of the TF and the DNA library, and expected range and
distribution of ∆∆G values and return predicted equilibrium
concentrations of each species within the bound and unbound
fractions (SI Appendix, Fig. S3). To make these simulations com-
putationally feasible, we modeled 100 species uniformly dis-
tributed across the ∆∆G range with a single high concentra-
tion “dummy” substrate to represent the majority of species.
As the ∆∆G range and number of species increases, species
become depleted from the unbound fraction (SI Appendix, Fig.
S3), causing ∆∆G values estimated from sequencing input to
systematically underestimate true ∆∆G values for high affinity
interactions (SI Appendix, Fig. S4). However, under the condi-
tions used here (30 nM and 1 µM concentrations for TF and
DNA libraries, respectively, with 1,048,576 species and a range

E3704 | www.pnas.org/cgi/doi/10.1073/pnas.1715888115 Le et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 4
5.

17
6.

89
.9

 o
n 

Fe
br

ua
ry

 6
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

45
.1

76
.8

9.
9.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1715888115


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

A

B

C

0.00

0.25

0.50

0.75

1.00

102 103 104 105 106

Sequencing depth, read counts

M
ed

ia
n

no
rm

al
iz

ed
 a

cc
ur

ac
y

mononucleotide
additive model
individual ΔΔG

Pearson′s r2 fract.obs.

lib. size = 10
2

lib. size = 10
3

lib. size = 10
4

lib. size= 10
5

lib. size = 10
6

1 2 3 4 5 1 2 3 4 5

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

ΔΔG, kcal/mol

M
ed

ia
n

Sequencing depth

103

104

105

106

107

108

0.00

0.25

0.50

0.75

1.00

10-1 100 101 102 103

Mean reads per sequence

M
ed

ia
n

fract. obs.
Pearson's r2

Fig. 2. Probing the relationship between assay accuracy, read depth, library
size, and energy range. (A) Normalized median accuracy (Pearson’s r2× f ,
where f is the fraction of observed species) comparing results for down-
sampled data with “true” values as a function of read depth for MN
model coefficients (red) (40) and individual ∆∆G values (blue). (B) Median
squared Pearson’s correlation coefficients between recovered and true val-
ues (r2, Left) and median fraction of observed species (Right) as a func-
tion of binding affinity range for various library sizes (rows) sequenced
to different depths. (C) Median squared Pearson’s correlation coefficient
(r2) between recovered and true values (blue) and fraction of observed
species (red) as a function of mean reads per sequence for 10 repli-
cate simulations; cyan rectangle denotes flank library assay conditions pre-
sented here.

of ∆∆Gs < 4kcal/mol), this approximation is justified. Calcu-
lated assay accuracies (r2 × fraction of library observed) for
simulated HTS of these distributions reveal two regimes with

decreased accuracy (SI Appendix, Fig. S5): Large libraries with
small ∆∆G ranges are subject to sequencing-associated count-
ing error, while libraries with large ∆∆G ranges are subject to
sampling error and effects of ligand depletion.

Previous observations of concentration-dependent Pho4 and
Cbf1 binding to E-box motifs with mutations in the first
flanking nucleotide revealed differences in affinities spanning
∼1 kcal/mol (32). While these observations may not reflect the
full energetic range of binding for the larger library queried here,
they provide a reasonable initial estimate given that the most
proximal flanking nucleotide likely has the largest impact on
binding. To guide sequencing assays, we examined in detail sim-
ulations sampling a 1,048,576-member library with this energy
range at mean read depths per species of 10−1–103 (103–108

total reads) (Fig. 2C). Although 95% of sequences can be recov-
ered from as few as 4–5 reads per species, high read depths of
∼102 counts per species (108 total reads per TF) are required to
yield individual ∆∆G measurements with accuracies of ∼80%
and errors of ∼0.2 kcal/mol.

Modeling Specificity from Noisy Individual Measurements Improves
Assay Resolution. Very high-depth sequencing may be cost-
prohibitive for studies involving many TFs or when consider-
ing large DNA libraries. In those scenarios, modeling can be
used to infer determinants of binding specificity while minimiz-
ing stochastic sampling noise. To illustrate the power of this
approach, we again considered the published LacI repressor
dataset (40). Although ∼102 reads per sequence were required
for accurate ∆∆G estimates, 101 to 102-fold fewer reads per
sequence allowed generation of additive MN PWM models with
similar predictive power to those generated from the entire
dataset (Fig. 2A). However, while PWMs predict high affinity
binding, they fail to explain variance among lower affinity target
sites with high sequence diversity (32, 40).

A NN trained on millions of noisy per-sequence measurements
can capture all measurable higher order complexity, yielding a
high-resolution model capable of accurately predicting binding
over a wide range of energies. However, this increased predic-
tive power comes at the cost of interpretability. To improve the
accuracy of our energetic estimates while preserving the ability to
gain mechanistic insights, we applied an integrated measurement
and modeling approach (Fig. 3A). First, we collected millions
of sequencing-based estimates of per-sequence ∆∆Gs. Next, we
trained a NN model on these sequencing data to obtain high-
resolution energetic predictions for each substrate that capture
the effects of all higher order nonadditive interactions among
nucleotides. Finally, we parsed and quantified the biophysical
mechanisms responsible for observed TF–DNA binding by sys-
tematically comparing correlations between predictions made
by the NN model and biophysically motivated linear models
(MN, nearest neighbor DN, and all DN models). This integrated
scheme yielded a binding energy landscape of unprecedented
scale and energetic resolution and allowed dissection of the bio-
physical mechanisms responsible for Pho4 and Cbf1 specificity.

High-Throughput, Comprehensive Estimates of Absolute Binding
Affinities for Pho4 and Cbf1. We used the BET-seq assay and
DNA library described above to acquire four replicate measure-
ments of Pho4 and three of Cbf1 at sequencing depths ranging
from ∼5 to 50 million reads allocated to either bound or input
samples (SI Appendix, Table S1). For each experiment, ∆∆Gs
were calculated for each sequence from the measured ratio of
bound to input read counts (SI Appendix, Fig. S6). As predicted,
measured per-sequence ∆∆Gs between two experiments at low
read depth (ca. 6–8 million limiting counts) show no correlation;
at higher read depths (∼24 million limiting counts), this corre-
lation increases to r2 = 0.67 (SI Appendix, Fig. S7 and Table
S2). To further improve resolution, we trained a NN regression
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Fig. 3. Modeling and interpretation of binding specificity based on MN
features. (A) Data analysis diagram shows NN modeling from raw data fol-
lowed by model interpretation. (B) Magnitude of energetic changes (∆∆Gs)
for core (red) (32) and flanking (blue) mutations for Pho4 and Cbf1. (C) Pho4
and Cbf1 mean MN ∆∆G values as a function of flanking sequence position
(Top), compared with the ScerTF database (67–70) sequence logos (Bottom).
Gray boxes show position of core consensus CACGTG. (D) Density scatter
plots comparing NN model estimates and MN additive model predictions
based on those estimates.

model that predicted the measured ∆∆G for each flanking
sequence. Accuracy of the NN against observed training data
and an unobserved validation dataset was recorded throughout
training; training was stopped once accuracy against the valida-
tion dataset failed to improve, protecting against overfitting to
the training data (SI Appendix, Fig. S8). Predictions from NN
models trained on the two high-depth Pho4 replicates showed
excellent correlation (r2 = 0.94), validating the ability to apply
such models to derive accurate, reproducible estimates of bind-
ing energies. For all analyses moving forward, we therefore use
per-sequence ∆∆G estimates output from the NN trained on a
composite dataset of all replicates (SI Appendix, Fig. S9).

Absolute binding energies and dissociation constants (∆G
and Kd, respectively) allow direct comparison between differ-
ent TFs and across experimental platforms and further enable
quantitative predictions of TF occupancy in vivo under known
cellular conditions. However, sequencing-based measurements

of ∆Gs from sparse datasets can underestimate the true affin-
ity range due to systematic undersampling of bound reads for
low-affinity sequences. In addition, the NN is trained only on
relative binding affinities (∆∆Gs) and therefore cannot return
estimates of absolute energies (∆Gs). NN-derived ∆∆G esti-
mates can be projected onto an absolute scale by calibrating
to a set of high-resolution biochemical measurements of ∆Gs
with a linear scaling factor and offset. To generate a set of high-
confidence ∆Gs, we measured concentration-dependent binding
for surface-immobilized Pho4 and Cbf1 TFs interacting with all
single-nucleotide variants of AGACA TCGAG, a medium affin-
ity reference flanking sequence (where the underscore indicates
the CACGTG core motif), via traditional fluorometric MITOMI
(SI Appendix, Figs. S10 and S11). For each sequence, observed
binding was globally fit to a single-site binding model, yield-
ing both Kds and ∆Gs (SI Appendix, Table S3). All NN values
were then scaled by fit parameters returned from a linear regres-
sion between NN predictions and experimental measurements
for these sequences. Median Kd values for all flanking library
sequences were 100 and 63 nM for Pho4 and Cbf1, respectively,
in agreement with prior work (32). Strikingly, flanking sequence
variation can modulate Kd values by over two orders of magni-
tude, ranging between 11–1,036 nM and 1–866 nM, respectively.
In some cases, the magnitude of these effects exceeds that of
mutations within the CACGTG core consensus (Fig. 3B and SI
Appendix, Fig. S12), demonstrating the importance of flanking
sequences to specificity.

Pho4 and Cbf1 Flanking Preferences Extend Far Beyond the Known
Consensus Sequence. To understand the biophysical features that
contribute to the predictive performance of the NN model, we
generated PWMs (71), which estimate the mean energetic con-
tribution of each nucleotide at each position, from the full set of
scaled NN-predicted ∆∆G values (Fig. 3C). While the assump-
tion of additivity fails to explain all specificity, these models offer
a close approximation (11, 44) and PWMs are easily visualized
and interpreted. These MN model results confirm that positions
proximal to the E-box core motif exhibit the largest mean effect
on binding, in agreement with PWMs generated by orthogonal
techniques (67–69) (Fig. 3C). However, nucleotides up to four
and five positions from the consensus contribute to specificity for
Pho4 and Cbf1, respectively, significantly farther than previously
reported.

To quantitatively assess the degree to which MN features dic-
tate binding behavior, we determined the proportion of NN-
derived per-sequence ∆∆G variance explained by a simple
PWM (Fig. 3D). If MN models capture all determinants of
observed specificity, PWM predictions should explain all of the
variance in NN-derived ∆∆G values; conversely, discrepancies
may indicate the presence of higher order interactions. PWMs
explained a majority of the variance in NN predictions (r2 = 0.92
and r2 = 0.70 for Pho4 and Cbf1, respectively) (SI Appendix,
Table S4), consistent with the prevailing sentiment that PWMs
provide good approximations of specificity (9, 11). Intriguingly,
PWMs explain a significantly smaller proportion of observed
Cbf1 measurement variance, suggesting that Cbf1 recognition
may rely on higher order determinants of specificity.

To evaluate BET-seq assay reproducibility, we generated
PWMs from each of the Pho4 and Cbf1 technical replicates
(SI Appendix, Fig. S13). Linear model coefficients for MNs at
each position were strongly correlated between replicates of
a TF (Pho4 r2 = 0.95–0.97 and Cbf1 r2 = 0.79–0.87) and
uncorrelated between TFs (SI Appendix, Table S5 and Fig.
S14); a meGFP negative control protein exhibited no sequence
specificity (SI Appendix, Fig. S15). Using the fraction of unex-
plained variance(1 – r2) as a precision metric, the expected
error range in NN-derived mean MN ∆∆G values for Pho4
is 0.02–0.04 kcal/mol and that of Cbf1 is 0.09–0.16 kcal/mol,
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highlighting the robustness of binding specificity models derived
from the assay and data presented here.

DN Models Reveal that Flanking Nucleotides Exhibit Significant Non-
additivity for Cbf1. The remaining unexplained variance observed
between NN-derived values and PWM-predicted values (∼8%
and ∼30% for Pho4 and Cbf1, respectively) could indicate higher
order nonadditive interactions governing specificity or could sim-
ply represent experimental noise (41) (SI Appendix, Table S4).
To probe for higher order interactions, we fit two DN models to
the NN-derived scaled ∆∆G values: a nearest neighbor model
that considers only contributions from adjacent DNs and a com-
plex model that considers contributions from all DN combina-
tions, including nonadjacent pairs (46).

Comparisons between nearest neighbor DN model-predicted
and NN-derived binding energies showed increased correla-
tion for both Pho4 and Cbf1, with r2 values of 0.98 and 0.94
(SI Appendix, Table S4 and Fig. 3 A and B). These improve-
ments, corresponding to ∼5% and 24% increases in explana-
tory power over MN models, are consistent with the poten-
tial for physically interacting nucleotides to affect binding
energies through local structural distortions. Considering all
possible DN features accounts for nearly all of the remain-
ing variance in NN-derived binding energies (improvements of
∼1% and 5% for Pho4 and Cbf1, respectively). These find-
ings highlight the differential degree to which nonadditivity
defines binding even among structurally related TFs, which ulti-
mately determines the predictive power and accuracy of widely
used PWMs.

To visualize and interpret binding energy contributions of DNs
alone, we calculated the mean residual ∆∆G from the linear
regression against PWM-predicted ∆∆G values for all possible
DNs within and across flanking sequences (Fig. 4C). Nucleotide
interactions with measured ∆∆Gs lower than expected based
on considering the linear combination of individual MNs exhibit
cooperativity; conversely, interactions that exhibit negative coop-
erativity increase measured ∆∆Gs more than expected. The
largest magnitude nonadditivity is observed for DNs immedi-
ately upstream or downstream of the E-box (N4/N5 or N6/N7
pairs), with absolute energetic differences among combina-
tions spanning ∼0.5 kcal/mol and epistatic interactions occur-
ring primarily within flanks rather than between them. Inter-
and intraflank DNs exhibited palindromic arrangements near
the core motif, consistent with the expectation of binding site
symmetry for homodimeric TFs like Pho4 and Cbf1 (62, 72).
For Cbf1, TT and TG DNs upstream of the motif (and the
corresponding downstream palindromes) exhibit large positive
and negative nonadditivity, respectively. Although the overall
magnitude of nonadditivity is significantly smaller for Pho4,
a GG DN downstream of CACGTG shows strong synergis-
tic effects. Interestingly, the Pho4 crystal structure reveals
direct contacts between the Arg2 and His5 residues and this
GG DN, providing a potential structural basis for this obser-
vation (62).

Incorporating Weight Constraints into DN Models Confirms that
Cbf1 Interactions Are Significantly More Epistatic. Models that
incorporate additional free parameters should always increase
explanatory power. While MN models attempt to describe all
1,048,576 observed measurements using only 40 free parame-
ters (4 nucleotides per position across 10 positions), the near-
est neighbor DN model adds another 128 free parameters (16
pairs across 8 positions), and the all DNs model includes 720
free parameters [all combinations of nucleotide identities (42 =
16) and positional pairs (

(
10
2

)
= 45)]. In most cases, DN coef-

ficients are near zero (Fig. 4C), meaning they contribute little
explanatory power. To identify the minimal set of features that
define sequence specificity in an unbiased fashion, we used least

A

B

C

Fig. 4. NN model interpretation using DN features. (A) Density scatter plots
of NN model estimates vs. DN (nearest neighbor) additive model predic-
tions based on those estimates. (B) Fraction of variance in Pho4 and Cbf1
NN model estimates explained by MN and DN models. (C) Heatmap of mean
residual energetic contributions when MN effects are removed for Cbf1.

absolute shrinkage and selection operator (LASSO) regression
to develop parsimonious linear models with weight constraints
(73). Nonzero coefficients in the model are penalized, leading to
inclusion of only the most explanatory variables with respect to
reduction in squared error (SI Appendix, Fig. S16). The regres-
sion explores a range of penalization stringencies to distinguish
important sequence features based on differential coefficient
minimization rates.

From the selected Cbf1 features, four nearest neighbor
DNs exhibited large initial coefficient magnitudes and per-
sisted throughout most of the penalization regime [two pairs of
palindromic DNs spanning the core motif: (NNNAT NNNNN,
NNNNN ATNNN) and (NNNGT NNNNN, NNNNN ACNNN)].
Strikingly, these DN model coefficients are up to 3-fold larger
than that of the most significant MN feature (SI Appendix, Figs.
S17 and S18), highlighting the importance of DNs to Cbf1 bind-
ing specificity. Among selected DN features for both Pho4 and
Cbf1, nearest neighbor pairs exhibited the largest coefficient
magnitudes (SI Appendix, Fig. S17).
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Orthogonal in Vitro Biochemical Measurements Confirm Results
Obtained Via HTS. To confirm that NN model predictions pro-
vide accurate per-sequence estimates of true binding energies,
we quantitatively compared titration-based ∆∆G values with
unprocessed measurements and NN predictions. Using tradi-
tional fluorometric MITOMI, we determined ∆∆Gs for Pho4
and Cbf1 binding to single-site variants of the ACAGA TCGAG
flanking sequence (SI Appendix, Table S3 and Figs. S10 and
S11). In addition, we compared NN predictions with previ-
ously reported ∆∆G measurements of CACGTG flanking site
mutations (18, 32). Consistent with Monte Carlo simulations,
∆∆G values calculated directly from raw sequencing data
showed essentially no correlation to direct measurements, with
r2 values ranging between 0.07–0.16 and 0–0.24 for Pho4 and
Cbf1, respectively (SI Appendix, Fig. S19). NN-predicted values
showed remarkable agreement, with r2 values ranging between
0.76–0.94 and 0.61–0.69 for Pho4 and Cbf1. In all cases, predic-
tions agreed with observations within ∼1 kcal/mol. These results
establish that the Pho4 and Cbf1 NN models presented here yield
accurate measurements of binding energies for >1 million TF–
DNA interactions with similar resolution to “gold-standard” bio-
chemical measurements.

High-Resolution in Vitro Affinity Measurements Can Be Used to Iden-
tify Biophysical Mechanisms Underlying in Vivo Behavior. The role
of transcriptional activators in vivo is not simply to bind DNA but
to bind specific genomic loci and regulate transcription of down-
stream target genes. The high resolution of these comprehensive
binding energy measurements makes it possible to quantitatively
estimate the degree to which measured binding affinities explain
differences in measured TF occupancies, rates of downstream
transcription, and ultimate levels of induction.

First, we compared NN-modeled ∆G values with measured
rates of transcription and fold change induction for engineered
promoters containing CACGTG Pho4 consensus sites with dif-
ferent flanking sequences driving the expression of fluores-
cent reporter genes (17, 18). As reported previously, rates of
transcription and induction scaled with measured ∆G values
(SI Appendix, Fig. S20). Next, we compared NN-derived bind-
ing energies with reported levels of TF occupancy in vivo at
CACGTG consensus sites in the S. cerevisiae genome for both
Pho4 and Cbf1 (63). Large magnitude TF enrichment induced
by phosphate starvation was observed at loci with measured Kd
values of around 100 nM or lower (Fig. 5A). While TF enrich-
ment roughly correlated with binding energy, very high affin-
ity sequences showed strikingly low enrichment. The observed
nonlinearities may indicate the degree to which other regulatory
mechanisms, such as cooperation and competition among TFs
or changes in DNA accessibility due to nucleosome positioning,
contribute to reported TF enrichment (63). Alternatively, these
nonlinearities may reveal the need for higher resolution in vivo
measurements to test the degree to which binding energies alone
dictate occupancies.

Previous analyses of TF binding energies used landscape visu-
alization strategies to identify energy-dependent patterns in the
data (74). To better understand the relationship between bind-
ing energies and in vivo occupancies, we similarly visualized the
binding energy landscapes for both Pho4 and Cbf1 as a function
of sequence space (Fig. 5B and SI Appendix, Fig. S21). The high-
est affinity sequence for each TF was placed at the center of a
series of concentric rings, each of which includes all sequences
at a given Hamming distance from this sequence. Within each
ring, points representing each sequence are arranged alphabeti-
cally, with the color of each point reporting the measured ∆∆G
for that sequence. As expected, the landscape forms a some-
what rugged funnel, with binding energies increasing with muta-
tional distance from the highest affinity site (SI Appendix, Fig.
S22). Next, we projected flanking site occupancies from ChIP-seq

A

B

Fig. 5. Pho4 and Cbf1 binding energies and in vivo activity. (A) Pho4 and
Cbf1 affinities (Kd, in nM) compared with in vivo ChIP-seq enrichment (63).
(B) Functional-energetic landscapes of ChIP enrichment at dynamically reg-
ulated loci, relative to the measured highest affinity sequence in Hamming
distance space.

experiments (63) onto these binding affinity landscapes to yield
a composite functional-energetic landscape (Fig. 5B). For both
Pho4 and Cbf1, the majority of enriched genomic loci are greater
than four mutational steps away from the global minimum, cor-
responding to mean increases in binding energy of approximately
0.8 and 1.5 kcal/mol, respectively (SI Appendix, Fig. S23). These
quantitative comparisons between measured affinities and in vivo
occupancies establish that even relatively small differences in
∆∆G are associated with differential TF enrichment.

Discussion
TFs play a central role in regulating gene expression through-
out development and allowing organisms to adapt to changing
environmental conditions. The ability to quantitatively predict
levels of TF occupancy in vivo from DNA sequence would there-
fore be transformative for our understanding of cellular func-
tion. TF binding at a given locus depends on multiple factors,
including accessibility of a particular site (75, 76), effects of coop-
eration and competition with other TFs and nucleosomes (77,
78), the presence of nucleotide modifications (79, 80), and the
nuclear concentration of a TF at a given time (81, 82). For acces-
sible, unmodified target sites, the probability of TF occupancy at
a given locus includes an exponential dependence on the cor-
responding TF–DNA binding energy (83); therefore, accurate
occupancy predictions require the ability to resolve even small
(∼1–2 kcal/mol) changes in binding energies. Toward this goal,
we developed an assay to provide comprehensive and quanti-
tative measurements of near-neutral changes in binding ener-
gies caused by mutations in the flanking sequences surround-
ing TF consensus sites. By training a NN on noisy estimates of
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binding energies for millions of sequences, we obtained a model
that incorporates all higher order complex interactions required
for accurate binding energy estimates for each sequence. In
future work, we anticipate that high-resolution in vitro binding
energy landscapes can be combined with genomic [e.g., methyl-
ation state (84) and chromatin accessibility data (85, 86)] and
mechanistic data (e.g., quantifying cooperation and competition
between other TFs and nucleosomes) to yield comprehensive,
predictive models of TF binding in vivo.

Many mutations in flanking nucleotides outside of “core” con-
sensus motifs can change binding energies by an amount equal
to or greater than mutations within the core. For example,
the difference in binding energy between a TCCCCCACGTG-
CCCCA sequence and a AATTTCACGTGAAAAG sequence is
∼2.6 kcal/mol, equivalent to mutating the core motif from
CACGTG to CGTGTG. The bold sequence indicates the consen-
sus TF motif ’CACGTG’ that is identical for all sequences within
the library, the italics indicate specific upstream and downstream
flanking sequences, and the underlined letters highlight a change
in the consensus sequence whose effects were previously mea-
sured in ref. 32. However, current representations of TFBSs
would predict a change in binding energy for only the core muta-
tion. This discrepancy may explain mysteries regarding ChIP
data in which some genomic loci are occupied despite an appar-
ent lack of a consensus site while other accessible regions con-
taining consensus sites remain unoccupied. In addition, many
current efforts to infer the presence of bound TFs first ana-
lyze DNase-seq or ATAC-seq data to identify regions of acces-
sible DNA and then scan these regions for putative bound TFs
by searching for sequence similarities to known TFBSs. Failing
to consider flanking sequence effects could return a significant
number of both false-positives and false-negatives.

In practice, measuring complete binding energy landscapes
remains rare, with most assay development focused toward dis-
covery of the highest affinity sequences. The binding energy
landscapes presented here provide a unique opportunity to
explore the mechanisms that drive evolution of transcriptional
regulatory networks. High-affinity, but submaximal, TF bind-
ing sites may be evolutionarily favorable due to the poten-
tial for greater dynamic transcriptional control (87). Consis-
tent with this, we find that the most highly occupied sites in
vivo are mutationally distant from the highest affinity flanking
sequences, potentially indicating the existence of an evolutionary
buffer used to avoid sequence proximity to a suboptimal binding
extreme. In addition, elevated levels of nonadditivity are thought
to produce more rugged energetic landscapes compared with
those created by additive binding interactions (88). Given that
nonadditive DN interactions play a larger role in determin-
ing Cbf1 specificity, we speculate that Cbf1 binding sites can
traverse fewer nondeleterious evolutionary pathways than Pho4,
ultimately rendering Pho4 binding sites more evolutionarily
plastic.

Systematic comparisons between per-sequence estimates of
binding energies output by a NN and a series of linear models
revealed the mechanistic features that drive specificity and quan-
tified their contributions to observed binding energies. These
results have relevance to recent debates surrounding the rela-
tive utility of DNA sequence-based models (PWMs) and DNA
shape-based models representing TF specificity. Both models
parameterize DNA binding preferences by a set of four val-
ues at each position [nucleotides (A, C, G, and T) for PWMs
(36) and structural features (minor groove width, propeller twist,
helical twist, and roll) for shape-based models (51–55)]. While
these models can extract mechanistic determinants of speci-
ficity from sparse data, higher order information is lost in the
process. Here, we demonstrate that models based on nearest
neighbor DN preferences fully explain observed binding behav-
ior, consistent with biophysical observations that local DNA

structure is largely determined by base stacking interactions
and interbase pair hydrogen bonds in the major groove between
adjacent base pairs (55, 89, 90). Such nearest neighbor DN mod-
els require only a modest increase in the number of required
free parameters relative to MN models. While the NN’s capac-
ity to incorporate higher order complexity ultimately proved
unnecessary for accurately modeling Pho4 and Cbf1 binding
specificities, high-resolution predictions output by the NN were
essential to quantify the degree to which simpler models could
explain observed behavior. The high resolution of these mea-
surements further allows direct quantification of the degree to
which thermodynamic models based on binding energies can pre-
dict behavior in vivo. The simulation-guided assay design and
experimental assay presented here should allow a broader diver-
sity of labs to make comprehensive and high-resolution mea-
surements of binding energy landscapes. While BET-seq was
deployed here for a specific use case (measurement of near-
neutral effects over a small energy range), these simulations can
guide choice of sequencing depths to resolve absolute binding
energies across a variety of applications and platforms (9, 11,
29, 91, 92), including target site discovery efforts. The assay
further offers the resolution of traditional MITOMI or HiTS-
FLIP fluorescence-based assays while requiring significantly less
equipment and infrastructure. Traditional MITOMI fluores-
cence assays require a DNA microarray printer and either a
high-cost fluorescence scanner or fully automated microscope
capable of imaging a slide with a microfluidic device attached;
HiTS-FLIP assays require access to a customized Illumina GAIIx
sequencing platform. A sequencing readout eliminates these
requirements, allowing any laboratory with access to educational
or commercial deep-sequencing services to measure energies
at this scale and resolution. Moreover, the microfluidic valv-
ing is significantly simpler than for traditional MITOMI assays,
reducing the pneumatics infrastructure required. Finally, BET-
seq provides unique opportunities in future work to probe addi-
tional control mechanisms that influence TF binding in vivo.
Introduction of synthesized DNA libraries containing modified
bases involved in epigenetic regulation (e.g., 5-methylcytosine,
5-hydroxymethylcytosine) could allow systematic investigation of
how these modifications affect TF specificities. In addition, BET-
seq should be compatible with DNA libraries assembled into
nucleosomal arrays in vitro, facilitating direct and quantitative
investigation of how competition between TFs and nucleosomes
dictates occupancies and how site-specific histone modifications
influence this competition (93–95). The simulations presented
here can guide the development of sequencing-based assays to
measure binding energies for additional systems, including both
protein–RNA and protein–protein interactions. In future work,
BET-seq can complement initial SELEX-seq and PBM efforts to
probe TF target specificity by providing high-resolution, quan-
titative mapping of the topography of these binding energy
landscapes.

Materials and Methods
NN Binding Models. NN input was defined as a flattened 4 × 10 one-
hot encoded matrix; NN output was the predicted ∆∆G value for the
species of interest. The network consisted of three hidden layers of size
500, 500, and 250 units, respectively. All weights were initialized with Xavier
initialization (96), and all layers used batch normalization (97) and ReLU
activation. The entire dataset was randomly divided into training (60%), val-
idation (10%), and test (30%) datasets; networks were trained using stochas-
tic gradient descent until the validation set root-mean-squared error failed
to decrease for three consecutive epochs. At this point, learning rate (ini-
tialized at 10−3) was decreased in 10-fold increments, and training contin-
ued until error failed to improve for a further two epochs (SI Appendix,
Fig. S8).

Linear Binding Models. Linear binding models were trained on scaled bind-
ing energy estimates output by the NN. The MN model includes sequence
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features consisting of nucleotide identities at each flanking position; near-
est neighbor DN included all MN features plus all possible combinations of
adjacent nucleotide pairs. The full DN model adds all nonadjacent (gapped)
DN combinations. All linear binding models were trained using the same
60% of the data as the NN; reported accuracies are calculated with respect
to the held-out 40% of the data.

Material Availability. Detailed methods are available in SI Appendix, raw
data are available from the Gene Expression Omnibus (accession number
GSE111936), processed and intermediate files are available from Figshare

(DOI 10.6084/m9.figshare.5728467), and code used for analysis and figure
generation is available on GitHub (https://github.com/FordyceLab/BET-seq).
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48. Annala M, Laurila K, Lähdesmäki H, Nykter M (2011) A linear model for transcrip-
tion factor binding affinity prediction in protein binding microarrays. PLoS One 6:
e20059.

49. Zhao X, Huang H, Speed TP (2005) Finding short DNA motifs using permuted Markov
models. J Comput Biol 12:894–906.

50. Sharon E, Lubliner S, Segal E (2008) A feature-based approach to modeling protein-
DNA interactions. PLoS Comput Biol 4:e1000154.

51. Rohs R, et al. (2009) The role of DNA shape in protein-DNA recognition. Nature
461:1248–1253.

52. Abe N, et al. (2015) Deconvolving the recognition of DNA shape from sequence. Cell
161:307–318.

53. Chiu TP, et al. (2016) DNAshapeR: An R/bioconductor package for DNA shape predic-
tion and feature encoding. Bioinformatics 32:1211–1213.

54. Yang L, et al. (2017) Transcription factor family-specific DNA shape readout revealed
by quantitative specificity models. Mol Syst Biol 13:910.

55. Zhou T, et al. (2013) DNAshape: A method for the high-throughput prediction of DNA
structural features on a genomic scale. Nucleic Acids Res 41:W56–W62.

56. Quang D, Xie X (2016) DanQ: A hybrid convolutional and recurrent deep neural net-
work for quantifying the function of DNA sequences. Nucleic Acids Res 44:e107.

57. Djordjevic M, Sengupta AM, Shraiman BI (2003) A biophysical approach to transcrip-
tion factor binding site discovery. Genome Res 13:2381–2390.

58. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detect-
ing protein-nucleic acid interactions. Nat Protoc 2:1849–1861.

59. Fordyce PM, et al. (2012) Basic leucine zipper transcription factor Hac1 binds DNA
in two distinct modes as revealed by microfluidic analyses. Proc Natl Acad Sci USA
109:E3084–E3093.

60. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5:226.
61. Fisher F, Goding CR (1992) Single amino acid substitutions alter helix-loop-helix pro-

tein specificity for bases flanking the core CANNTG motif. EMBO J 11:4103–4109.
62. Shimizu T, et al. (1997) Crystal structure of PHO4 bHLH domain-DNA complex: Flank-

ing base recognition. EMBO J 16:4689–4697.

E3710 | www.pnas.org/cgi/doi/10.1073/pnas.1715888115 Le et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 4
5.

17
6.

89
.9

 o
n 

Fe
br

ua
ry

 6
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

45
.1

76
.8

9.
9.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715888115/-/DCSupplemental
https://github.com/FordyceLab/BET-seq
http://www.pnas.org/cgi/doi/10.1073/pnas.1715888115


BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

63. Zhou X, O’Shea EK (2011) Integrated approaches reveal determinants of genome-
wide binding and function of the transcription factor Pho4. Mol Cell 42:826–
836.

64. Kivioja T, et al. (2012) Counting absolute numbers of molecules using unique molec-
ular identifiers. Nat Methods 9:72–74.

65. Fu GK, et al. (2014) Molecular indexing enables quantitative targeted RNA sequenc-
ing and reveals poor efficiencies in standard library preparations. Proc Natl Acad Sci
USA 111:1891–1896.

66. Fu GK, Hu J, Wang PH, Fodor SPA (2011) Counting individual DNA molecules by the
stochastic attachment of diverse labels. Proc Natl Acad Sci USA 108:9026–9031.

67. Spivak AT, Stormo GD (2012) ScerTF: A comprehensive database of benchmarked posi-
tion weight matrices for Saccharomyces species. Nucleic Acids Res 40:D162–D168.

68. Morozov AV, Siggia ED (2007) Connecting protein structure with predictions of regu-
latory sites. Proc Natl Acad Sci USA 104:7068–7073.

69. MacIsaac KD, et al. (2006) An improved map of conserved regulatory sites for Saccha-
romyces cerevisiae. BMC Bioinformatics 7:113.

70. Wagih O (2017) ggseqlogo: A versatile R package for drawing sequence logos. Bioin-
formatics 3:3645–3647.

71. Stormo GD, Schneider TD, Gold L (1986) Quantitative analysis of the relationship
between nucleotide sequence and functional activity. Nucleic Acids Res 14:6661–6679.

72. Mellor J, et al. (1990) CPF1, a yeast protein which functions in centromeres and pro-
moters. EMBO J 9:4017–4026.

73. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series
B Stat Methodol 58:267–288.

74. Carlson CD, et al. (2010) Specificity landscapes of DNA binding molecules elucidate
biological function. Proc Natl Acad Sci USA 107:4544–4549.

75. Thurman RE, et al. (2012) The accessible chromatin landscape of the human genome.
Nature 489:75–82.

76. Degner JF, et al. (2012) DNase I sensitivity QTLs are a major determinant of human
expression variation. Nature 482:390–394.

77. Segal E, et al. (2006) A genomic code for nucleosome positioning. Nature 442:772–
778.

78. Gebhardt JCM, et al. (2013) Single-molecule imaging of transcription factor binding
to DNA in live mammalian cells. Nat Methods 10:421–426.

79. Khund-Sayeed S, et al. (2016) 5-Hydroxymethylcytosine in E-box motifs ACAT|GTG
and ACAC|GTG increases DNA-binding of the B-HLH transcription factor TCF4. Integr
Biol 8:936–945.

80. Yin Y, et al. (2017) Impact of cytosine methylation on DNA binding specificities of
human transcription factors. Science 356:eaaj2239.

81. Hao N, O’Shea EK (2011) Signal-dependent dynamics of transcription factor translo-
cation controls gene expression. Nat Struct Mol Biol 19:31–39.

82. Tay S, et al. (2010) Single-cell NF-κB dynamics reveal digital activation and analogue
information processing. Nature 466:267–271.

83. Bintu L, et al. (2005) Transcriptional regulation by the numbers: Models. Curr Opin
Genet Dev 15:116–124.

84. Frommer M, et al. (1992) A genomic sequencing protocol that yields a positive dis-
play of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA
89:1827–1831.

85. Boyle AP, et al. (2008) High-resolution mapping and characterization of open chro-
matin across the genome. Cell 132:311–322.

86. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of
native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-
binding proteins and nucleosome position. Nat Methods 10:1213–1218.

87. Crocker J, Noon EPB, Stern DL (2016) The soft touch: Low-affinity transcription factor
binding sites in development and evolution. Curr Top Dev Biol 117:455–469.

88. Aguilar-Rodrı́guez J, Payne JL, Wagner A (2017) A thousand empirical adaptive land-
scapes and their navigability. Nat Ecol Evol 1:45.

89. Olson WK, Gorin AA, Lu XJ, Hock LM, Zhurkin VB (1998) DNA sequence-dependent
deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA
95:11163–11168.

90. Yang L, et al. (2014) TFBSshape: A motif database for DNA shape features of tran-
scription factor binding sites. Nucleic Acids Res 42:D148–D155.

91. Jolma A, et al. (2013) DNA-binding specificities of human transcription factors. Cell
152:327–339.

92. Tuğrul M, Paixão T, Barton NH, Tkačik G (2015) Dynamics of transcription factor bind-
ing site evolution. PLoS Genet 11:e1005639.

93. Simon MD, et al. (2007) The site-specific installation of methyl-lysine analogs into
recombinant histones. Cell 128:1003–1012.

94. Yang A, et al. (2016) A chemical biology route to site-specific authentic protein mod-
ifications. Science 354:623–626.

95. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquity-
lated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature
453:812–816.

96. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward
neural networks. Journal of Machine Learning Research: Workshop & Conference Pro-
ceedings [Proceedings of the 13th International Conference on Artificial Intelligence
and Statistics (AISTATS), Sardinia, Italy], Vol 9, pp 249–256.

97. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. International Conference on Machine
Learning, Journal of Machine Learning Research: Workshop & Conference Proceed-
ings (Proceedings of the 32nd International Conference on Machine Learning, Lille,
France), Vol 37, pp 448–456.

Le et al. PNAS | vol. 115 | no. 16 | E3711

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 4
5.

17
6.

89
.9

 o
n 

Fe
br

ua
ry

 6
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

45
.1

76
.8

9.
9.


