
Report
Optimized Sequence Libra
ry Design for Efficient
In Vitro Interaction Mapping
Graphical Abstract
Highlights
d A new sequence design that covers all possible k-mers by

using joker characters

d We developed an algorithm to generate such designs given

an alphabet and k

d Results demonstrate the ability to search a larger sequence

space at reduced cost

d Experimental validation proves the ability to identify high-

affinity binding sites
Orenstein et al., 2017, Cell Systems 5, 230–236
September 27, 2017 ª 2017 The Authors. Published by Elsevier
http://dx.doi.org/10.1016/j.cels.2017.07.006
Authors

Yaron Orenstein, Robert Puccinelli,

Ryan Kim, Polly Fordyce,

Bonnie Berger

Correspondence
bab@mit.edu

In Brief

We present a new compact sequence

design that covers all k-mers utilizing

joker characters and develop an efficient

algorithm to generate such designs. We

show through simulations and

experimental validation that these

sequence designs are useful for

identifying high-affinity binding sites at

significantly reduced cost and space.
Inc.

mailto:bab@mit.�edu
http://dx.doi.org/10.1016/j.cels.2017.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.07.006&domain=pdf


Cell Systems
Focus on RECOMB

Report
Optimized Sequence Library Design
for Efficient In Vitro Interaction Mapping
Yaron Orenstein,1 Robert Puccinelli,2 Ryan Kim,3 Polly Fordyce,2,4,5,6 and Bonnie Berger1,7,8,*
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Genetics, Stanford University, Stanford, CA 94305, USA
3Research Science Institute, Center for Excellence in Education, McLean, VA 22102, USA
4Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
5ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
6Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
7Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
8Lead Contact

*Correspondence: bab@mit.edu

http://dx.doi.org/10.1016/j.cels.2017.07.006
SUMMARY

Sequence libraries that cover all k-mers enable uni-
versal, unbiased measurements of binding to both
oligonucleotides and peptides. While the number of
k-mers grows exponentially in k, space on all exper-
imental platforms is limited. Here, we shrink k-mer
library sizes by using joker characters, which repre-
sent all characters in the alphabet simultaneously.
We present the JokerCAKE (joker covering all
k-mers) algorithm for generating a short sequence
such that each k-mer appears at least p times with
at most one joker character per k-mer. By running
our algorithm on a range of parameters and alpha-
bets, we show that JokerCAKE produces near-
optimal sequences. Moreover, through comparison
with data from hundreds of DNA-protein binding ex-
periments andwith new experimental results for both
standard and JokerCAKE libraries, we establish that
accurate binding scores can be inferred for high-af-
finity k-mers using JokerCAKE libraries. JokerCAKE
libraries allow researchers to search a significantly
larger sequence space using the same number of
experimental measurements and at the same cost.

INTRODUCTION

Protein-DNA, -RNA, and -peptide interactionsdrivemany cellular

processes. High-throughput experimental data describing the

strength and specificity of individual protein interactions through

universal, unbiased libraries provide critical information for pre-

dicting targets in vivo and reconstructing interaction networks.

These experiments typically attempt to directly measure protein

binding to sequence libraries that cover all possible DNA, RNA,

or amino acid k-mers. Universal, or complete, coverage guaran-

tees that specificities can be identified de novo for any protein,

without any prior knowledge of its preferences or the conditions

under which it is active. Microarrays that cover all k-mers have
230 Cell Systems 5, 230–236, September 27, 2017 ª 2017 The Autho
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been used successfully in various biotechnologies to measure

protein-DNA, -RNA, and -peptide binding (Berger et al., 2006;

Fordyce et al., 2010; Gurard-Levin et al., 2010; O’Donoghue

et al., 2012; Ray et al., 2009; Smith et al., 2013).

While these technologies have been used successfully to

measure protein interactions, they all face a similar challenge:

the space on the experimental device and the sequence length

that can be used are both limited, restricting the total sequence

space that can be probed in a single experiment. In particular,

increasing k poses difficulties since the number of sequences

needed to cover all k-mers increases exponentially with k, as

the number of k-mers over alphabet
P

is jPjk. Several algo-
rithmic solutions have been proposed to generate sequence li-

braries that cover all possible k-mers in themost compact space

possible. A de Bruijn sequence is the shortest sequence in which

each k-mer appears exactly p times, with the total sequence

length given by jPjkp + k � 1. De Bruijn sequences and variants

of them have been the basis of several microarray designs

(O’Donoghue et al., 2012; Orenstein and Berger, 2016 Orenstein

and Shamir, 2013; Philippakis et al., 2008; Ray et al., 2013; Smith

et al., 2013). The shared limitation of all of these designs is that all

k-mersmust occur in the initial unbiased sequence set, thus their

total length is at least the number of k-mers jPjk.
Here, we generate smaller libraries that cover all k-mers by us-

ing joker characters, thereby maximizing the ability to probe

sequence preferences within a constrained experimental space.

Joker characters represent degenerate nucleotides (or amino

acids) that cover all characters in the alphabet (e.g., joker char-

acter N within an oligonucleotide represents {A,C,G,T}). Oligonu-

cleotides containing such degenerate nucleotides (or amino

acids) can be ordered directly from the vendor at no extra

cost. When degenerate characters are specified within an oligo-

nucleotide sequence, vendors simply substitute near-equimolar

mixtures of nucleotides (adjusted to compensate for small differ-

ences in coupling efficiencies) in place of a single nucleotide

species during the coupling reactions. This substitution thereby

produces a pool of oligonucleotides, with approximately 25%

containing each of A, C, G, and T at that position. Thus far,

however, they have been excluded from unbiased library de-

signs. The use of joker characters has the potential to introduce

degeneracy, which lowers the statistical robustness of the
rs. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. An Illustration of Subsequence of a Joker de Bruijn

Sequence of Order k = 6 over DNA Alphabet Compared with an Orig-

inal de Bruijn Sequence
measurements: a measurement of a single microarray spot is

now assigned to multiple sequences instead of just one. Exper-

imentally, the effective concentration of a high-affinity binder can

be reduced up to 4-fold, leading to a concomitant decrease in

the dynamic range of measured intensities. Thus, we limit the

use of joker characters to one joker character per k-mer (Fig-

ure 1). Previous theoretical studies have considered the problem

of covering all k-mers using joker characters, but with different

restrictions and limitations, making them impractical for library

design applications (Blanchet-Sadri et al., 2010; Chen et al.,

2016b; Goeckner et al., 2016; Wyatt, 2013). None of these works

considered the problem with the restriction that we defined, i.e.,

coverage of all k-mers with the limitation of one joker character

per k-mer.

In this work, we study the problem of generating a minimum-

length sequence to cover all k-mers, each at least p times, with

at most one joker character per k-mer. We first present an over-

view of our novel algorithm, JokerCAKE, for generating compact

jokerdeBruijnsequences.JokerCAKE isbasedon twoalgorithmic

steps: a greedy heuristic and an integer linear programming (ILP)

formulation. We compare our results with the original de Bruijn

sequence as well as a theoretical lower bound, and show that

our approach achieves results that are near optimal. In addition,

we simulate nearly 1,000 publicly available experiments thatmea-

sure protein-DNA binding using the joker library and demonstrate

that accurate binding scores for high-affinity k-mers can be in-

ferred from them. Finally, we experimentally test protein-DNA

binding on a joker library that covers all DNA 8-mers and present

results in high agreement with our computational results.

JokerCAKE and the universal sequences generated by it are freely

available at: http://jokercake.csail.mit.edu and Data S1.

RESULTS

High-Level Description of JokerCAKE
We start with a high-level outline of the method and refer the

reader to the STAR Methods for a detailed description of

JokerCAKE, its implementation, and runtime and memory usage

results. JokerCAKE (Joker Covering All K-mErs) is an algorithm

for generating a short sequence that covers all k-mers using
joker characters. The solution is based on two steps: (1) a greedy

heuristic; and (1) an ILP formulation. The greedy heuristic

examines at each step an addition of a joker character followed

by k � 1 characters from
P

. The addition that covers the most

k-mers that are yet to be covered p times is chosen and added

to the current sequence. The algorithm terminates when all

k-mers have been covered at least p times. The ILP formulation

minimizes the number of k-mers in the sequence under two sets

of constraints. The first requires that each k-mer occurs at least

p times. The second guarantees that the k-mer occurrences can

form a sequence. The ILP is solved using Gurobi ILP solver

version 6.5.2 (Gurobi Optimization, 2014), where it is given the

greedy solution as a starting solution.

The two algorithms differ in runtime and optimality guarantees.

The greedy approach is bounded in runtime by O(jPj2k p).

Thanks to an efficient implementation, the runtime for k = 10 on

a DNA alphabet takes less than 20 min. Our empirical results

show that JokerCAKE produces sequences that are very close

to the theoretical lower bound, implying near optimality. The

ILP formulation solves the problem optimally but has no feasible

bounds on the runtime. Thus, we limit the runtime in our tests.

Note that even though the time limit we used is high (4 weeks),

it has to be run only once to produce a sequence that covers all

k-mers. Henceforth, the same sequence can be used for

numerous technological implementations that require this value

of k in their k-mer coverage. This sequence length is independent

of oligo lengths in the experimental device, as the sequence can

be cut into pieces of variable lengths. Moreover, the ILP solver

benefits from running onmultiple threads, so with more available

computational resources, it can produce better results faster.

We demonstrate the reduced sequence size achieved by

running JokerCAKE on variable combinations of the parameters

(Figure 2): k, multiplicity p, and alphabet. We start by evaluating

the greedy approach with p = 1 (i.e., covering each k-mer at least

once) on two different alphabets: DNA and amino acid. For the

DNA alphabet, we also added a feature to cover k-mers in

reverse complement pairs, which enables a reduction by half in

sequence length. Results show that the greedy approach pro-

duces sequences that are very close to the theoretical lower

bound (Figures 2A–2C). To demonstrate the benefit of adding k

characters at a time, we also applied a greedy approach, which

adds one character at a time (compared with k characters).

Moreover, the ILP reduces the sequence length even further,

bringing it very close to the theoretical lower bound. We further

evaluated the results as a function of the multiplicity p, i.e.,

how many times each k-mer has to be covered. Here, we

observe fast convergence to the theoretical lower bound

with p (Figures 2D–2F). We believe that this is due to the fact

that the greedy algorithm can take many more ‘‘optimal steps’’

until it reaches the remaining ‘‘suboptimal steps’’ that are

needed to cover all k-mers. This is also true for the greedy

approach that adds one character at a time in the case of the

amino acid alphabet. We did not run the ILP in the multiplicity

test since the greedy results were near optimal.

JokerCAKE Libraries Perform Well Against
Experimentally Captured Binding Scores
We used simulated data to demonstrate that the binding scores

inferred for our joker library compare favorably with the original
Cell Systems 5, 230–236, September 27, 2017 231
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Figure 2. Results of JokerCAKE Compared with Original de Bruijn Sequences, a Simpler Approach, and Theoretical Lower Bound

We ran JokerCAKE on different combinations of k value, alphabet, and multiplicity p. Performance is measured as ratio of sequence length produced by

JokerCAKE or greedy1 compared with a de Bruijn sequence.

(A–C) The performance is a function of k, where p = 1. (A) DNA; (B) DNA with reverse complement; (C) Amino acids.

(D–F) The performance is a function of p, where k = 8 for DNA and k = 4 for amino acid alphabets. (D) DNA; (E) DNA with reverse complement; (F) Amino acids.

Greedy1 stands for the results for a greedy approach adding 1 character at time. Greedy stands for the results after the first greedy step of JokerCAKE. ILP stands

for the result after improving the greedy solution using integer linear programming (ILP). A comparison of the runtimes andmemory usage of the greedy algorithm

and ILP solver are presented in Figures S1 and S2, respectively. Improvements in the ILP solution as a function of runtime are presented in Figure S3.
experimentally measured scores. After proving that JokerCAKE

can efficiently reduce library size while at the same time covering

all k-mers, we sought to determine how much information is lost

in this reduction. To answer this question, we turned to

UniPROBE, a database that includes data from 987 protein-

binding microarray (PBM) experiments covering 528 different

transcription factors (TFs) from multiple structural families and

various species. Each PBM experiment includes binding scores

of a specific TF to almost 42,000 35- to 36-long probe sequences

designed to cover all 10-mers. For each experiment, we calcu-

lated 8-mer binding scores by computing the average binding

intensity of all probes in which they occur. We then simulated re-

sults for experiments measuring TF binding to different libraries

by assigning binding scores to each sequence in the library.

The assigned score was the maximum 8-mer binding score

among the 8-mers it contained. To compare the simulation

with the original experiment, we calculated 8-mer binding scores

in the same manner and compared the simulated and experi-

mental results via Pearson correlation. Moreover, we calculated

the success rate of consensus binding-site identification. We
232 Cell Systems 5, 230–236, September 27, 2017
performed this test for three input libraries: (1) 0-joker: de Bruijn

library of 38,387 DNA sequence covering all 10-mers with no

joker characters; (2) 1-joker: joker library of 11,482 DNA se-

quences covering all 10-mers, with at most one joker character

per 10-mer; and (3) 2-joker: joker library of 3,107 DNA sequences

covering all 10-mers, with at most two joker characters per

10-mer. 0-joker and 2-joker libraries serve as an upper and lower

bound on 1-joker, respectively. See STARMethods for a detailed

description of the simulation and testing.

Figure 3 shows the results of our experimental simulations

comparing joker and de Bruijn libraries in measuring protein-

DNA binding. The median Pearson correlation is 0.79 ± 0.08,

0.72 ± 0.09, and 0.59 ± 0.12 for the 0-joker, 1-joker, and 2-joker

libraries, respectively (Figure 3A). While we see a small decrease

in Pearson correlation (0.07 on average) when introducing 1 joker

character per 10-mer, the increase is more significant when

2 joker characters are introduced (0.20 on average, with

increased variance); in some cases the 2-joker correlation results

even reach 0. However, those motifs determined to have the

highest affinity in the original experiments consistently remain



Figure 3. Simulation Results in Inference of Protein-DNA Binding Preferences Using Joker de Bruijn Libraries

For three different libraries covering all 10-mers, with at most 0/1/2 joker characters per 10-mer, binding scores were simulated for each PBM experiment out

of 987.

(A) Histogram of Pearson correlations of 8-mer binding scores per experiment. For each experiment, experimental binding scores were compared with simulated

scores on the three libraries.

(B) Identification of consensus binding sites in hamming distance. For each experiment, the hamming distance of the closest 6-mer between the top experimental

and top simulated 8-mers was calculated.

(C–E) 8-mer binding scores of protein Hnf4a (binding GGGGTCAA; Hume et al., 2015). (C) 0-joker; (D) 1-joker; (E) 2-joker. The PBM experiment achieved median

Pearson correlation on the 1-joker library.
among the highestscoring motifs in the simulated results for the

joker libraries, confirming that this approach can identify global

high-affinity binders and provide a ‘‘foothold’’ for subsequent

experimental refinement.Whencounting thenumberofconsensus

binding sites identified correctly, we see that 0-joker and 1-joker

libraries have similar performance of 94% and 93%, respectively,

while the 2-joker library drops to an 88% success rate (Figure 3B).

Thus, we effectively retain the power of correct consensus identi-

fication with a library that is smaller by a factor of almost four.

We highlight the enhanced performance by further focusing on

one PBM experiment on which the median Pearson correlation

was achieved (Hnf4a_2640.2_v2). For this experiment, we plot

8-mer binding scores inferred in simulation on the different li-

braries versus the original experimental binding scores (Figures

3C–3E). As expected, we observe a reduction in correlation

with the usage of more joker characters. However, when only

1 joker character is used, scores of high-affinity 8-mers are

correctly inferred, while accuracy is lost only for low-affinity

8-mers (Figure 3D).
JokeCAKE Library Performs Well in Experimental
Validation
To validate our approach, we synthesized a joker library that

covers all 8-mers in reverse complement pairs and experimen-

tally measured binding of a well-characterized TF from Saccha-

romyces cerevisiae (Pho4) using the MITOMI platform (Fordyce

et al., 2010; Maerkl and Quake, 2007). This joker library con-

tained only 240 52-bp-long DNA sequences compared with an

original library that required 740 52-bp-long oligonucleotides to

cover all 8-mers. We gauged the accuracy of the new library in

comparison with the original one by comparing k-mer binding

scores obtained from each. As each 8-mer occurs at least

once, each k-mer for k % 6 occurs multiple times, allowing for

inference of accurate k-mer binding scores.We also constructed

a position weight matrix (PWM, a common model to represent

protein-DNA binding preferences) from each experiment and

visualized it as sequence logo.

The results of the experimental validation are in high concor-

dance with our simulated results. Plots comparing k-mer scores
Cell Systems 5, 230–236, September 27, 2017 233



Figure 4. Results of aMITOMI Experiment on

Joker Library Covering all 8-mers Compared

with an Original MITOMI Experiment Mea-

suring Pho4-DNA Binding

(A–D) Pearson correlation between k-mer scores

derived from both experiments. (A) 3-mer binding

scores; (B) 4-mer bindings scores; (C) 5-mer bind-

ing scores; (D) 6-mer binding scores.

(E) Sequence logos of PWMs generated from the

original (left) and joker (right) experiments.
for 3 % k % 6 show that we can accurately infer k-mer scores

for high-affinity k-mers, and the accuracy improves for low-

affinity k-mers as k decreases (Figures 4A–4D). This finding is

expected since as k decreases, k-mer occurrences increase;

as a consequence, the statistical robustness improves. Pho4

is known to prefer CACGTG target sites, and the returned

sequence logos show that CACGTG was successfully identified

as the consensus binding site in both experiments (Fig-

ure 4E). Although the sequence logo generated from the joker

experiment is less strict as the binding scores for lower-

affinity k-mers are blurred (Figure 4D), these experiments

establish that the use of joker characters can significantly

reduce the library size while preserving the ability to retrieve
234 Cell Systems 5, 230–236, September 27, 2017
high-affinity k-mers that can be directly

probed in a second set of experiments.

DISCUSSION

While the use of joker characters can limit

the ability to quantitatively identify both

high- and low-affinity binders in a single

experiment, this limitation is not a signifi-

cant bottleneck for experimental proto-

cols in which protein binding specificities

are determined via a two-step experi-

mental process. In the first ‘‘discovery’’

step, libraries that cover all k-mers,

including joker characters, can be used

to globally identify high-affinity candidate

binding sequences via an unbiased

search. In the second ‘‘refinement’’ step,

a second set of experiments quantifying

binding to a series of motifs containing

systematic substitutions to the candidate

consensus can be used to break the de-

generacy, extend the length of the motif,

and identify probable regulatory targets

in vivo. Many MITOMI experiments

already make use of such a two-step pro-

cess, suggesting that introducing joker

characters would not drastically change

experimental workflows (Fordyce et al.,

2012; Hernday et al., 2013; Lohse et al.,

2013; Nelson et al., 2013).

Here, we demonstrate results for Pho4,

a basic-helix-loop-helix transcription fac-

tor known to bind a relatively compact
motif. However, we expect that the ability to extend k-mer

search space within current experimental techniques will likely

have the greatest impact for structural families that have proven

difficult to study. The ability to extend k-mer search space is

particularly useful for transcription factors known to bind half

sites separated by a variable spacing, such as the poorly charac-

terized fungal Zn2Cys6 TFs (Najafabadi et al., 2015) and other

families known to bind extended motifs (e.g., homeodomain

TFs; Yang et al., 2017).

Another clear advantage of our solution is its generality and

flexibility. The alphabet is given as input to JokerCAKE, enabling

a solution to any set of characters, including both oligonucleo-

tide analogs and unnatural amino acids in the amino acid



alphabet. Moreover, with a simple modification, both the greedy

heuristic and ILP formulation can solve the problem of covering a

specific set of k-mers, e.g., exclusion of specific k-mers for tech-

nical reasons (e.g., enzyme restriction sites as in RNAcompete

(Ray et al., 2009)). More generally, our solution can be modified

for variable k-mer multiplicities and inclusion of more than one

joker character per k-mer.

We see several limitations in our study. First, our algorithm is

not guaranteed to produce an optimal result in polynomial

time. While the greedy heuristic is not guaranteed to produce

an optimal result, we show empirically that it performs very

well and produces a result that approaches the lower bound as

the multiplicity p increases. The ILP solver is guaranteed to pro-

duce an optimal result but is not guaranteed to terminate in poly-

nomial time; however, it too performed reasonably in practice.

From our experience, we recommend using it for smaller alpha-

bets and values of k, e.g., DNA alphabet and k % 7. With

increased computational power and development of more effi-

cient solvers, the ILP solution will be useful for larger alphabets

and values of k. Second, the joker library introduces ambiguity

in the measurements. Shrinking the library size comes at a

cost of a smaller sample size, thus lowering the statistical robust-

ness of the inferred scores. Still, in our simulated experiments

and experimental validation, we were able to infer accurate bind-

ing scores for high-affinity k-mers, thereby identifying global

minima within the binding specificity landscape and enabling

detailed follow-up experiments to explore the local topography.

In summary, this work presents a new library design that

covers all k-mers within a size that is almost 1/jPj smaller than

current libraries. Our design enables the ability to measure inter-

actions of longer k-mers with reduced costs. While for a DNA

alphabet the savings may seem modest, they are significantly

greater for an amino acid alphabet, where our design is 20 times

smaller; for example, the ability to now handle k = 4 as opposed

to 3 corresponds to an increase of 133% in information

measured. We have made the implementation and calculated

universal libraries freely available for researchers to use in

designing unbiased library sequences. With our newly designed

smaller libraries at increased k, we expect measurement of pro-

tein-DNA, -RNA, and -peptide interactions and the resulting

research to significantly advance.
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Antibodies

Anti 6x His tag antibody (biotin) Abcam 27025; RRID: AB_470880

Chemicals, Peptides, and Recombinant Proteins

Pierce Bovine Serum Albumin, Biotinylated Thermo Fisher 29130

NeutrAvidin Thermo Fisher 31000

Klenow Fragment, exonuclease - New England Biolab M0212L

Critical Commercial Assays

TnT T7 Quick Coupled In Vitro Transcription/Translation kit Promega L4610

Fluorotect Green BODIPY-labeled charged lysine tRNA Promega L5001

Deposited Data

UniPROBE database Harvard University http://the_brain.bwh.harvard.edu/uniprobe/

Oligonucleotides

Alexa-647-labeled 5’-A647-GTCATACCGCCGGA-3’ Integrated DNA technologies Custom

Recombinant DNA

Pho4-5xHis cloned into pTnT plasmid AddGene N/A

Software and Algorithms

Java Java https://www.java.com/en/

Gurobi 6.5.2 Gurobi Optimizer http://www.gurobi.com/

JokerCAKE This study N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Bonnie

Berger (bab@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Proteins used in these experiments were generated via in vitro transcription/translation of S. cerevisiae Pho4 in cell free extracts; no

organisms were used.

METHODS DETAILS

Experimental Validation of Joker Library
A pseudorandom oligonucleotide library with wildcard characters was generated by specifying 4-fold degenerate nucleotides (’N’)

at wildcard positions within 70-bp oligonucleotides (Integrated DNA Technologies). Experiments measuring transcription factor

binding to this wildcard library were performed largely as described previously (Fordyce et al., 2010, 2012). Briefly, each sequence

in the library was fluorescently labeled and converted to double-stranded DNA via hybridization to a universal Alexa 647-labeled

oligonucleotide (Integrated DNA Technologies) followed by extension with Klenow fragment, exonuclease minus (New England Bio-

labs). After synthesis, the library was printed using a custom-built robotic microarrayer onto epoxysilane-treated glass slides

(ThermoFisher). AMITOMImicrofluidic device was aligned to themicroarray and the transcription factor affinity assaywas performed

by expressing Pho4 in rabbit reticulocyte lysate (TnT T7 Quick Coupled In Vitro Transcription/Translation kit, Promega) in the pres-

ence of BODIPY-labeled charged lysine tRNAs (Fluorotect Green, Promega), recruiting it to antibody-patterned surfaces (created by

sequentially flowing biotinylated BSA (ThermoFisher), Neutravidin (ThermoFisher), and biotinylated anti-pentaHis antibodies

(Abcam)), and mechanically trapping the transcription factor-oligonucleotide interactions using on-chip valves. The device was
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then imaged using an inverted fluorescence microscope (Nikon Ti-E or Ti-S) to quantify levels of surface-immobilized transcription

factors and bound DNA. Images were automatically stitched using Fiji software and analyzed using custom image analysis software

written in Matlab.

QUANTIFICATION AND STATISTICAL ANALYSIS

Notation
A k-mer is a word of length k over a given alphabet

P
. In this study, we refer to two alphabets

P
AA={A,R,N,D,C,Q,E,G,H,I,

L,K,M,F,P,S,T,W,Y,V} and
P

DNA={A,C,G,T}. In the text below, we interchangeably refer to a k-mer as a word and an integer by

the natural conversion in base jPj. For example, {A,C,G,T}={0,1,2,3} and AGC = 0,40 + 2, 41 + 1,42 = 24.

A joker character, denoted by x, represents all characters in
P

, i.e. x representing {A,C,G,T}. K-mer w=(w1,.,wk) is covered by

sequence S if there exists 0%i%jSj-k such that for 1%j%k: Si+j˛{x,wj}. We say that w occurs at index i in S. In other words, any orig-

inal character of W may be replaced by the joker character.

We define a (k,p,
P

)-joker de Bruijn sequence as a sequence covering all k-mers, each at least p times, with at most one joker char-

acter per k consecutive characters. K-mer w is covered at least p times by sequence S if there are p distinct indices {i1,.,ip} such that

w occurs at index ij in S for 1%j%p.

We also define reverse complementarity. A complement relation is a symmetric non-reflexive relation, i.e. A=T and C=G. The

reverse complement of k-mer w = {w1, .,wk} is RCðwÞ= fwk ;.;w1g. A k-mer is RC-covered by sequence S if it occurs in either

S or RC(S). A (k,p,RC,
P

)-joker de Bruijn sequence RC-covers each k-mer over
P

at least p times.

In this study, we consider the following problem and its version utilizing the reverse complement property.

MINIMUM-LENGTH (k, p,
P

)-JOKER DE BRUIJN SEQUENCE

INSTANCE: k value, multiplicity p, alphabet
P

.

VALID SOLUTION: (k, p,
P

)-joker de Bruijn sequence S.

GOAL: Minimize jSj.

Greedy Heuristic
Wedescribe in detail the greedy algorithm, which is the first step in JokerCAKE, to find a (k, p,

P
)-joker deBruijn sequence. It is based

on a greedy heuristic that examines at each step an addition of a joker character followed by k-1 characters from
P

. The addition that

covers the most k-mers that are yet to be covered p times is chosen and added to the current sequence. The algorithm terminates

when all k-mers have been covered at least p times. The algorithm is summarized as Algorithm 1.

We bound the runtime of Algorithm 1. We first prove the following Lemma on the minimum number of k-mers covered in each iter-

ation of the top while loop (line 4 in Algorithm 1).

Algorithm 1 Generate a (k, p,
P

)-joker de Bruijn sequence

1: Set CURR to be an arbitrary (k-1)-mer over
P

.

2: Initialize SEQ to CURR.

3: Initialize array A of k-mers counts to 0.

4: while there are still k-mer counts in A smaller than p do

5: Initialize MAX to 0.

6: for all (k-1)-mers over
P

W do

7: Set COUNT to number of unique k-mers CURR x W newly covers.

8: if COUNT>MAX then

9: MAX=COUNT.

10: MAXK-1MER=W.

11: end if

12: end for

13: Set SEQ= SEQ x MAXK-1MER.

14: Update array A according to newly covered k-mers by CURR x MAXK-1MER.

15: Set CURR=MAXK-1MER.

16: end while

17: Output sequence SEQ.

Lemma 1. In each iteration of the while loop in Algorithm 1 at least one k-mer is newly covered.

Proof. Denote W a k-mer that is yet to be covered p times. The inner for loop (line 6) iterates over all possible (k-1)-mers, including

the (k-1)-suffix of W, denoted by sk-1(W). Thus, CURR x sk-1(W) newly covers W. Since the for loop finds the maximum, it has to be at

least one.

Corollary 1. The number of iterations of the while loop in Algorithm 1 is bounded by pjPjk.
e2 Cell Systems 5, 230–236.e1–e5, September 27, 2017



Proof. The number of k-mers that have to be covered is pjPjk. By Lemma 1 at least one k-mer is newly covered at each iteration.

Thus, the bound on the total number of iterations is pjPjk.
Theorem 1. The running time of Algorithm 1 is bounded by O(pjPj2k-1k).
Proof. The while loop runs at most pjPjk iterations by Corollary 1. The inner for loop runs jPjk-1 iterations since it iterates over all

(k-1)-mers. Inside the if statement exactly 2k-1 k-mers in CURR xMAXK-1MER are examined. We assume that to examine each k-mer

takes constant time O(1) as it is one array operation. Thus, the total running time is O(pjPj2k-1k).

ILP Formulation
Next, we describe in detail the ILP formulation, which is the second step in JokerCAKE, to solve the MINIMUM-LENGTH

(k, p,
P

)-JOKER DEBRUIJN problem.We start with defining the variables. X variables are k-mer counts of k-mers with no joker char-

acter. Y variables are k-mer counts of k-mers that include one joker character. A and Z variables define the start and end of the

sequence. See the following definition:

1. jPjk integer variables Xi. Each Xi corresponds to the number of times the exact k-mer occurs in the sequence (with no joker

character).

2. k,jPjk-1 integer variables Yi,j. Each Yi,j corresponds to the number of times a k-mer with one joker character at position j and the

rest of the positions as (k-1)-mer i occurs in the sequence.

3. 2jPjk-1 binary variables. Ai/Zi corresponds to the starting/ending (k-1)-mer of the sequence, respectively.

As we aim for the shortest sequence, the objective function is

min
Xj
Pjk

i =1

Xi +
Xj
Pjk�1

i = 1

Xk

j = 1

Yi;j

The first constraint is the coverage constraint, which requires that all k-mers occur at least p times. Let f(i,j) be the (k-1)-mer of all

positions but j of k-mer i.

Xi +
Xj = k

j = 1

Yfði;jÞ;jRp 1%i%
���
X���

k

The second constraint guarantees that the k-mer occurrences can form a sequence. We require that for each (k-1)-mer (including

those with one joker character) the number of k-mers with that (k-1)-mer in their suffix is equal to the number of k-mers with that

(k-1)-mer in their prefix (except for two, which allows the formation of a sequence instead of requiring a cycle). Denote px(i) and

sx(i) the x-long prefix and suffix of i, respectively.

For (k-1)-mers with no joker character:

Ai +Yi;1 +
X

sk�1ði0 Þ= i

Xi
0 =Zi +Yi;k +

X
pk�1ði0 Þ= i

Xi
0 1%i%

���
X���

k�1

For (k-1)-mers with a joker character at position 1 % j % k-1:

X
sk�2ði0 Þ= i

Yi
0
; j + 1 =

X
pk�2ði0 Þ= i

Yi
0
; j 1%i%

���
X���

k�2

; 1%j%k � 1

And to ensure that only one (k-1)-mer is at the beginning of the sequence and one at the end, we require:

Xj
Pjk�1

i = 1

Ai =
Xj
Pjk�1

i = 1

Zi%1

RC-Covering all K-mers
To further shrink libraries over double-stranded DNA, we utilize the reverse complement property and generate a (k, p, RC,

P
)-joker

de Bruijn sequence. We made two modifications to the algorithms above. For Algorithm 1 whenever we consider and choose a new

addition of k-1 characters and a joker character (lines 7 and 14), we need to account for both the k-mers and their reverse comple-

ment. For the ILP formulation we modified the coverage constraint. The modified constraint is:

Xi +XRCðiÞ
Xj= k

j =1

Yfði;jÞ;j +YfðRCðiÞ;jÞ;jRp 1%i%
���
X���

k
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Implementation
We implemented the algorithms in Java. We used Gurobi ILP solver version 6.5.2 (Gurobi Optimization, 2014). We set the Method

parameter in Gurobi to 3 as recommended to improve the running time of the root relaxation process. We set a time limit for the

ILP solver since solutions for kR5 for DNA and kR3 for amino acid alphabet did not terminate based on the default criteria. Running

times were benchmarked on a single CPU of a 20-CPU Intel Xeon E5-2650 (2.3GHz) machine with 384GB 2133MHz RAM.

Theoretical Lower Bound
We prove theoretical lower bounds for (k, p,

P
)-de Bruijn and (k, p, RC,

P
)-de Bruijn sequences.

Theorem 2. Denote by n(k, p,
P

) and n(k, p, RC,
P

) the lengths of a (k, p,
P

)-de Bruijn sequence and (k, p, RC,
P

)-de Bruijn

sequence, respectively. Then,

n
�
k; p;

X�
R

���
X���

k�1

+ k � 1
8 �
n
�
k; p;

X�
=

>>><
>>>:

��
X���

k�1

2
+ k � 1; k is odd

���
X���

k�1

+
���
X���

k=2�1

2
+ k � 1; k is even

Proof. The number of k-mers over alphabet jPj is jPjk. The number of reverse complement k-mer pairs is jPjk /2 for odd k and

(jPjk + jPjk/2)/2 for even k due to reverse complement palindromes. Since there is at most one joker character per k-mer, the number

of k-mers in the sequence can be reduced by at most jPj. For a non-cyclic sequence, k-1 characters need to be added.

Open Questions
Several open questions remain from our study. First, is there an optimal solution that runs in time polynomial in O(pjPjk)? Second, is

there a good enough heuristic that runs in time linear in the output length, i.e. O(pjPjk), or at least asymptotically faster than Algorithm

1? Third, can we provide tighter lower and upper bounds?

Testing JokerCAKE Performance
We ran JokerCAKE with p=1 on DNA alphabet with 5%k%12, DNA alphabet in reverse complement pairs with 5%k%12 and amino

acid alphabet with 3%k%5.We also ran it with 1%p%10 on these alphabets with k=8, 8 and 4, respectively.We compared the results

with a length of an original de Bruijn sequence jPjkp+k-1 over DNA and amino acid alphabets, and approximately half when consid-

ering reverse complement pairs. We also compared to a greedy approach adding 1 character at a time. We added a theoretical lower

bound, which is approximately 1/jPj of a length of an original de Bruijn sequence.

Simulation Experiments on Joker Library
We downloaded all protein binding microarray (PBM) experiments from UniPROBE database (Hume et al., 2015), a total of 987 ex-

periments. Each experiment contains almost 42,000 35-36-long DNA sequences covering all 10-mers together with corresponding

binding intensities of a specific protein. For each experiment, we inferred 8-mer binding scores by calculating the average binding

intensities of the probes they appear in (including as reverse complement) (Orenstein et al., 2013). We simulated a PBM experiment

on three different libraries: 0-joker, 1-joker, 2-joker. All cover all 10-mers, with the difference in the numbers of jokers per 10-mer

(0,1,2, respectively). The 0-joker was generated by a de Bruijn sequence, 1-joker by JokerCAKE and 2-joker by a variant of

JokerCAKE allowing 1 joker per 5-mer while covering all 10-mers. We note that having more than one joker character in a k-mer

is undesirable due to the high degeneracy, and thus we did not implement this feature in JokerCAKE. Each sequence was chopped

into 36-long DNA sequences with an overlap of 9bp not to lose any 10-mer. For each sequence in this library we assigned the

maximum 8-mer score that occurs in it, where for 8-mers that contain joker characters we took the average score of the 8-mers it

represents. Finally, we calculated 8-mer binding scores on the simulated experiment in the same fashion as on the experimental

PBM data. Moreover, we identified a consensus sequence for each experiment as the 8-mer whose sum of scores of itself and all

its neighbors in one hamming distance was the highest. We calculated the similarity between two consensus 8-mers as the hamming

distance between the closest 6-mers they contain (taking into account the reverse complement). We considered a hamming distance

%1 to the consensus of the original experiment as correctly identified consensus.

Comparison of Standard and Joker Library
We compared this experiment to an experiment with the same 8-mer coverage but with no joker characters. For each experiment we

inferred k-mer binding scores for k%6 by calculating the average binding intensities of the oligos they occur in. Thesewere compared

by Pearson correlation. PWMs were generated by the highest-affinity 6-mer and its 1-hamming distance neighbors as was recently
e4 Cell Systems 5, 230–236.e1–e5, September 27, 2017



done for high-throughput SELEX data (Chen et al., 2016a; Jolma et al., 2010). For each position in the PWM the nucleotide weights

corresponded to the scores of the 6-mers that vary in that position. For example, scores of CACGTG, AACGTG, GACGTG and

TACGTG were used as the weights in the first position of the PWM. We could not use the approach that was previously used for

MITOMI data as it cannot be applied to degenerate sequences (Fordyce et al., 2010).

DATA AND SOFTWARE AVAILABILITY

JokerCAKE and the universal sequences generated by it are freely available at: http://jokercake.csail.mit.edu and Data S1 supple-

mental file. The MITOMI experiments on Pho4 protein using the standard and joker libraries have been deposited in the GEO data-

base under accession numbers GEO: GSE99723, GSM2650866 and GPL23547.
Cell Systems 5, 230–236.e1–e5, September 27, 2017 e5
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Figure S1. Runtimes of the greedy algorithm and ILP solver. Related to Fig-
ure 2. Green and black lines correspond to greedy algorithm and ILP solver,
respectively. In panels A, B, C the performance is a function of k, where p = 1.
In panels D, E, F the performance is a function of p, where k = 8, 4 for DNA
and amino acids alphabets, respectively. Running times were benchmarked on a
single CPU of a 20-CPU Intel Xeon E5-2650 (2.3 GHz) machine with 384 GB
2133 MHz RAM. ILP results for DNA alphabet and k > 8 are not available since
Gurobi ILP solver did not complete the initialization for k = 8 in the given time
limit. Note that in A,B,C the y-axis is in logarithmic scale.



Figure S2. Memory usage for the greedy algorithm and ILP solver. Related to
Figure 2. Green and black lines correspond to greedy algorithm and ILP solver,
respectively. In panels A, B, C the performance is a function of k, where p = 1.
In panels D, E, F the performance is a function of p, where k = 8, 4 for DNA
and amino acids alphabets, respectively. Memory usage was benchmarked on a
single CPU of a 20-CPU Intel Xeon E5-2650 (2.3 GHz) machine with 384 GB
2133 MHz RAM. ILP results for DNA alphabet and k > 8 are not available since
Gurobi ILP solver did not complete the initialization for k = 8 in the given time
limit. Note that in A,B,C the y-axis is in logarithmic scale.



Figure S3. ILP solution improvements as a function of runtime. Related to Figure
2. In panels A and B colors red, green and blue correspond to k = 5, 6, 7,
respectively, on DNA alphabet. In panel C colors red and blue correspond to
k = 3, 4, respectively, on amino acids alphabet. Ratio of ILP solution sizes to a
de Bruijn sequence are plotted as a function of the runtime up to 28 days.
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