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SUMMARY
Transcription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or
DNA can alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies
have profiled energetic effects of DNA mutations extensively, we lack similar information for TF variants.
Here, we present STAMMP (simultaneous transcription factor affinity measurements via microfluidic protein
arrays), a high-throughput microfluidic platform enabling quantitative characterization of hundreds of TF var-
iants simultaneously. Measured affinities for �210 mutants of a model yeast TF (Pho4) interacting with 9 ol-
igonucleotides (>1,800Kds) reveal that many combinations ofmutations to poorly conserved TF residues and
nucleotides flanking the core binding site alter but preserve physiological binding, providing amechanism by
which combinations ofmutations in cis and trans couldmodulate TF binding to tune occupancies during evo-
lution. Moreover, biochemical double-mutant cycles across the TF-DNA interface reveal molecular mecha-
nisms driving recognition, linking sequence to function. A record of this paper’s Transparent Peer Review
process is included in the Supplemental Information.
INTRODUCTION

Regulation of gene expression is critical for proper organismal

development and response to environmental stimuli. This regula-

tion is accomplished primarily by transcription factor (TF) proteins

that bind specific regulatory DNA sequences in the genome to

activate or repress gene expression (Mitsis et al., 2020). Reflecting

this central role in cellular function, mutations to either DNA regu-

latory sequences or TF proteins have profound effects across

evolution and medicine. Mutations that alter TF-DNA interactions

in cis (DNA-binding sites) or in trans (diffusible factors, e.g., TFs)

drive organismal evolution by rewiring transcriptional networks

and generating phenotypic variation (Signor and Nuzhdin, 2018;

Wonget al., 2017). Inmedicine, themajority of disease-associated

mutations in humans are found within regulatory DNA (Maurano

et al., 2012; Nishizaki et al., 2020), and mutations in TFs often

lead to cancers (Lambert et al., 2018a; Lee and Young, 2013)

and developmental disorders (Lee and Young, 2013; Barrera

et al., 2016). A quantitative and predictive understanding of how

mutations affect TF-DNA binding interactions would, therefore,

have broad impacts on understanding biology.
112 Cell Systems 12, 112–127, February 17, 2021 ª 2020 Elsevier Inc
The probability of TF occupancy at a given genomic site is

typically modeled as a function of the Gibbs free energy of bind-

ing (DG) for that TF-DNA sequence combination and the effective

concentration of free TFs in the nucleus (Foat et al., 2006; Kim

and O’Shea, 2008; Segal et al., 2008; Gertz and Cohen, 2009;

Weirauch et al., 2013; Zhao and Stormo, 2011; Le et al., 2018).

As a result, differences in binding site affinity and available TF

concentrations can modulate the strength and timing of tran-

scriptional programs (Crocker et al., 2016). While much effort

has focused on determining the highest affinity sites for a given

TF (Chen et al., 2016; Jolma et al., 2010; Zykovich et al., 2009),

nonspecific and low-affinity sites in the genome often play

essential functional roles and are evolutionarily conserved (Far-

ley et al., 2015; Crocker et al., 2016; Kribelbauer et al., 2019).

Given that even subtle changes in affinity can alter transcription

(Meinhardt et al., 2013; Rajkumar et al., 2013; Le et al., 2018), un-

derstanding how TF and DNA mutations affect binding requires

the ability to measure affinities with high accuracy over a wide

energetic range.

Many prior efforts have comprehensively characterized how

variation in underlying DNA sequence alters TF binding energies
.
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for up to 106 DNA variants in parallel (Le et al., 2018). These

studies have established that typical TF-DNA binding energies

span nearly 2–3 orders of magnitude (�3 kcal/mol) (Nutiu et al.,

2011; Kribelbauer et al., 2019), that mutations to nucleotides

within or flanking the ‘‘core’’ consensus site can alter affinities

over a wide range (Le et al., 2018; Maerkl and Quake, 2007),

and that measured binding energies can predict levels of induc-

tion and rates of transcription in vivo (Gaudet and Mango, 2002;

Aow et al., 2013).

By contrast, far less is known about howmutations throughout

a TF protein alter DNA binding, even though binding energies

depend on the sequences of both the underlying DNA and the

TF. This lack of data likely stems from the technical challenges

associated with high-throughput expression, purification, and

quantitative biophysical characterization of large TF mutant li-

braries. Current large-scale studies of simultaneous TF and

DNA mutants have been performed with non-thermodynamic

screening approaches (Maerkl and Quake, 2009; Persikov

et al., 2015). Previous quantitative studies have focused on

limited sets of residues, such as those that directly contact the

DNA sequence (Ferreiro et al., 2008; Maerkl and Quake, 2009;

Wang et al., 2017), regulate dimerization of protein partners (Vor-

onova and Baltimore, 1990), or are associated with human dis-

ease (Barrera et al., 2016). While these studies have confirmed

that mutations at strongly conserved residues typically dramati-

cally alter DNA-binding affinity, the effects of mutations at poorly

conserved residues remain understudied (Meinhardt et al.,

2013). Large quantitative datasets describing the effects of mu-

tations throughout and surrounding TF binding domains on DNA

binding could reveal mechanistic insights not easily inferred from

static crystal structures and provide critical information about

binding interfaces for TFs recalcitrant to crystalization efforts

(Fuxreiter et al., 2011). In addition, such datasets would also pro-

vide an invaluable resource for optimizing computational

methods designed to predict mutational effects for precision

medicine (Ng and Henikoff, 2003; Adzhubei et al., 2010; Choi

et al., 2012) and create synthetic transcriptional circuits.

Here, we report the development of simultaneous transcrip-

tion factor affinity measurements via microfluidic protein arrays

(STAMMP), amicrofluidic platform capable ofmeasuring binding

affinities for >1,500-TFmutants simultaneously interacting with a

DNA sequence of interest in a single experiment. As a first

application, we systematically quantify mutational effects on

DNA-binding affinity and specificity for Pho4, a homodimeric

basic helix-loop-helix (bHLH) TF in yeast that binds a 50-
CACGTG-30 E-box motif to drive gene expression in response

to phosphate starvation (Ogawa et al., 2000). We measured

more than 1,800 binding affinities (Kds or DGs) for �210 Pho4

mutants interacting with oligonucleotides containing mutations

within and flanking the core E-box site and found that a large

fraction (>70%) of residue mutations have statistically significant

effects onDNAbinding. Strikingly, of themore than 1,800 pairs of

TF and DNA mutations assayed, nearly 70% of mutations that

altered but did not ablate binding occurred at nucleotides

outside of the core binding site and at residues that do not con-

tact DNA nucleotides. These combinations of mutations in cis

and in trans could tune affinities across a wide range, illustrating

the importance of previously unexplored and poorly conserved

residues in modulating TF function. Finally, biochemical dou-
ble-mutant cycles between TF amino acid residue and DNA

nucleotide mutations provide mechanistic insight into the inter-

actions that govern recognition, quantifying the energetic contri-

butions of contacts predicted from the crystal structure and

revealing additional residues required for specificity. We antici-

pate that STAMMP and the presented data will be broadly useful

for the future development of quantitative models designed to

link TF sequence to structure and function.

RESULTS

STAMMP Enables High-Throughput Characterization of
the Functional Effects of TF Mutations on DNA Binding
High-throughput functional characterization of large numbers of

TF mutants requires the ability to recombinantly express and pu-

rify hundreds of TFs in parallel. To accomplish this task,

STAMMP affinity measurements take place within a microfluidic

device containing 1,568 valved reaction chambers, each of

which contains a ‘‘plasmid’’ compartment and a ‘‘binding reac-

tion’’ compartment (Figures 1A and S1) (Fordyce et al., 2010;

Maerkl and Quake, 2007). Three sets of valves control fluid

flow within and between reaction chambers: ‘‘neck’’ valves

separate plasmid and binding compartments, ‘‘sandwich’’

valves physically sequester reaction chambers from one another

to prevent cross-contamination, and ‘‘button’’ valves (Figure 1A)

in the binding compartment enable selective surface patterning

within the device and trap macromolecular binding interactions

at equilibrium for quantitative affinity measurements.

To program each reaction chamber with a specific TF variant,

microfluidic devices are aligned to spotted plasmid arrays (Fig-

ure 1B). Each plasmid encodes expression of a TF variant fused

to a C-terminal monomeric eGFP tag (Zacaharias et al., 2002),

with the identity of each mutant encoded by its position in the

array. After alignment, device surfaces are specifically patterned

with anti-eGFP antibodies (anti-GFP) beneath the ‘‘button’’ valve

and coated elsewhere with biotinylated bovine serum albumin

(bBSA) to prevent nonspecific adsorption. All TF variants are

then expressed in parallel via the introduction of cell-free extract

into each chamber and incubation of the device for 45minutes at

37�C. After expression, TFs are purified via recruitment to anti-

body-patterned surfaces (Figures 1B and 2). Subsequent closing

of the ‘‘button’’ valves allows extensive washing and trypsin

digestion to remove any nonspecifically bound TFs and cell-

free expression components while protecting surface-immobi-

lized protein; the final eGFP fluorescence intensity in each cham-

ber reports on the amount of immobilized TF (Figures 1B and 1C).

To measure full binding isotherms for all expressed TFs inter-

acting with a particular oligonucleotide sequence, we iteratively

introduce fluorescently tagged DNA duplexes at multiple con-

centrations across all chambers (Figures 1C and 2). After allow-

ing reactions to come to equilibrium, we again close the ‘‘button’’

valves in each chamber, thereby trapping all bound TF-DNA

complexes. After washing, we image all reaction chambers

across the device to quantify TF and DNA intensities and esti-

mate fractional occupancies (Figure 1C). We then fit estimated

fractional occupancies as a function of the effective concentra-

tion of free DNA in solution (calculated from intensities using

per-chamber calibration curves, Figure S2) to a Langmuir

isotherm to extract binding affinities (Kds) and relative
Cell Systems 12, 112–127, February 17, 2021 113
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Figure 1. STAMMP: Microfluidic Platform for High-Throughput TF Expression and Assays

(A) Photograph of MITOMI device with labeled reagent and DNA inlets and pneumatic valve controls highlighted (left). Inset (right) shows plasmid (labeled

‘‘plasmid’’) and DNA binding reaction compartments (labeled ‘‘reaction’’) and annotated pneumatic valves (‘‘button,’’ ‘‘sandwich,’’ and ‘‘neck’’) in orange.

(B) Workflow for device surface functionalization and in situ expression and purification of TF libraries and final schematic of components used for surface-

immobilization of eGFP-tagged TFs (right). Components of functionalized surface, include bBSA, NeutrAvidin (NA), and biotinylated anti-GFP, which binds the

GFP-tagged TF (TF-GFP).

(C) Workflow illustrating iterative introduction, equilibration, and trapping of TF-bound fluorescently labeled DNA to quantify concentration-dependent binding;

final ratios of DNA and TF fluorescence are proportional to fractional occupancy. Image contrast was enhanced to improve visibility for display purposes.

(D) Langmuir isotherms fit DNA/TF fluorescence intensity ratios as a function of free DNA concentration yield interaction binding affinities. Example raw binding

data (gray markers and fit lines) and calculated median fit curves (red lines) for 2 mutants are shown at right. Kd values represent median values ± SEM for

statistical replicates.
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differences in binding affinities (DDGs) for all TFs in parallel

(Figure 1D).

A Library of Pho4 Mutants Designed to Probe
Mechanisms of Binding Site Recognition
bHLH TFs are highly abundant in eukaryotes, representing the

third most abundant TF structural class in the human genome

(Lambert et al., 2018b). Pho4 is one of the eight bHLHs in

S. cerevisiae (Chen and Lopes, 2007), and prior work has estab-

lished that Pho4 binds the E-box core motif (50-CACGTG-30)
element to drive gene expression in response to phosphate star-

vation. In addition to this well-characterized and inducible bio-

logical function, Pho4 has a well-characterized DNA-binding

interface (Shimizu et al., 1997; Cave et al., 2000) and a wealth

of prior biophysical data describing how mutations to the under-

lying DNA sequence affect affinity (Maerkl andQuake, 2007; For-

dyce et al., 2010; Le et al., 2018). Comparisons between the

Pho4 crystal structure and those of other bHLHproteins (Shimizu

et al., 1997; Brownlie et al., 1997; Párraga et al., 1998) also show
114 Cell Systems 12, 112–127, February 17, 2021
structural similarity, suggesting that Pho4 can serve as a model

for understanding how bHLH specificity is encoded in a protein

sequence.

The DNA-binding domains (DBDs) of all bHLH TF superfamily

members contain a helical basic region (which directly contacts

DNA) and two additional helices separated by an unstructured

loop of variable length (Figure 3A). Four residues within the basic

region directly contact nucleobases within the major groove of

the E-box recognition site and are strongly conserved

throughout organisms, including yeast and humans (R252,

H255, E259, and R263 in Pho4); additional residues within the

loop contact the DNA backbone (Figures 3A and S3). Pho4 binds

DNA as a homodimer (Figure 3B), with conserved hydrophobic

residues in the helix 1 and helix 2 regions promoting stable

dimerization (Figure 3A).

To systematically probe how residues throughout and imme-

diately surrounding the DBD contribute to binding affinity and

specificity, we generated a library of 223 Pho4 mutants

comprising systematic substitutions, variants from other bHLH
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(A) Surface chemistry to pattern antibody in device for subsequent TF immobilization.
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generate a concentration-dependent binding curve.
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orthologs, known disease-associated variants from human or-

thologs, and a selection of mutants designed to probe mecha-

nisms of binding (Figure 3C). For systematic substitutions, we

introduced alanine and valine residues at each site, thereby

ablating side chains and substituting a hydrophobic moiety,

respectively. To probe disease-associated and evolutionary var-

iants, we introduced mutations from the human bHLH MAX pre-

viously observed in tumor samples and made substitutions to

residues observed in orthologs across ascomycetes, humans,

and C. elegans (DeMasi et al., 2011) at the corresponding

Pho4 positions. Finally, we tested the effects of altering the elec-

trostatic charge of amino acids on Pho4 binding by substituting
charged residues for those with the opposite charge or by

substituting uncharged residues for positively charged residues.

After on-chip expression, immobilization, and purification, ex-

pressed TFs were visible as high-intensity spots within each re-

action chamber in the eGFP channel, while chambers lacking

plasmid typically showed no fluorescence (Figure 3D). A small

fraction of chambers lacking plasmid yielded observable inten-

sities, providing a sensitive readout of potential cross-contami-

nation between chambers that were used to set a lower

threshold for identifying chambers with successful expression.

Overall, 216 of 223 mutants (�97%) successfully expressed at

least once (Figure 3E), and 205 of 223 mutants (�92%)
Cell Systems 12, 112–127, February 17, 2021 115
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Figure 3. Pho4 Mutant Library Design and Expression

(A) Protein sequence alignment for bHLH proteins across yeast and humans.

(B) Pho4 structure (PDB: 1A0A) with regions within the DNA-binding domain labeled.

(C) Pho4 library mutants categorized by scan, presence in other bHLH proteins, representation in disease variants, and other types of mutations (charge

modulation, etc.).

(D) Plasmid map of full-length Pho4 construct fused to C-terminal GFP tag (left), sample image of 9 of 1,568 device chambers showing measured fluorescence

intensities for chambers containing Pho4-eGFP plasmid and empty chambers (red) (middle), and measured intensities for all chambers across 3 devices (right).

Vertical red dashed line denotes cutoff intensity between positive and no TF expression.

(E) Binary tree summarizing mutant outcomes for all 223 mutants in the library. 216 cloned mutants expressed at least once, of which 205 variants expressed

reliably across 26 experiments in this study.
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expressed consistently across the 26 experiments in this study

(Figure 3E).

Most Mutations throughout Pho4 Have Statistically
Significant Effects on DNA Binding
First, we tested which residues contribute to Pho4 DNA binding

by quantifying the effects of amino acid mutations on measured

binding affinity for 50-C CACGTG A-30, a cognate DNA sequence

with medium-affinity flanking nucleotides chosen to enhance the

ability to observe beneficial and deleterious effects on binding

(Le et al., 2018). We generated fluorescently labeled DNA con-
116 Cell Systems 12, 112–127, February 17, 2021
structs by annealing an Alexa647-labeled primer to a universal

sequence at the 30 end of each DNA and extending constructs

using Klenow polymerase fragment (Figure 4A). Measured bind-

ing affinities were highly reproducible between experimental rep-

licates (Figure S4), allowing reliable determination of mutations

that both increased and decreased affinity relative to wild type

Pho4. To estimate affinities for deleterious variants with Kd

values above concentrations probed experimentally, we globally

fit all binding curves to a Langmuir isotherm with a single shared

saturation value and individually fit Kd values (Fordyce et al.,

2010, 2012; Nguyen et al., 2019; see STAR Methods and
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Figure 4. Many Mutations throughout the Pho4 DBD Alter DNA Binding

(A) Workflow for creating fluorescently labeled DNA duplexes for binding assays.

(B) Pairwise comparison of measured Kd values (median ± SEM) for all TF mutants interacting with a 50-CCACGTGA-30 sequence assayed across two separate

devices (n = 190); wild type Pho4 is shown in blue. Black and red dashed lines indicate a linear regression and the identity line, respectively. Affinitymeasurements

were log-transformed and fitted to a linear model; RMSLE was then calculated from log-transformed values.

(C) Pairwise comparison of measured DDGs (median ± SEM) for Pho4 mutants; wild type Pho4 is shown in blue. Gray and red dashed lines indicate a linear

regression and the identity line, respectively.

(D) Median DDG of binding (±SEM) for all Pho4 mutants interacting with a 50-CCACGTGA-30 sequence; known crystal structure contacts (Shimizu et al., 1997;

Figure S4), amino acid conservation, and IUPred2 score (score > 0.5 is predicted disordered) are shown (Mészáros et al., 2018; Erd}os and Dosztányi, 2020).

(legend continued on next page)
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Figure S5). We also calculated change in binding energy relative

to wild type Pho4 by dividing affinity measurements for each

Pho4 mutant by the median affinity of wild type Pho4 and multi-

plying by the gas constant and temperature, thereby yielding

DDG values in kcal/mol. Extracted Kd and DDG values for all mu-

tants across experiments were highly reproducible over an ener-

getic range of �4 kcal/mol (Kd: r
2 = 0.96, root mean squared log

error [RMSLE] = 0.22 nM; DDG: r2 = 0.96, root mean square error

[RMSE] = 0.31 kcal/mol) (Figures 4B, 4C, and S4). We desig-

nated mutants with measured DDG values not statistically signif-

icantly different (using a two-tailed t-test with a Bonferroni

correction) from those for a mutant lacking DNA-binding activity

(A299D, which likely disrupts the dimerization interface) as bind-

ing-deficient (see STAR Methods, Figures S6 and S7).

A large fraction of mutations to residues within and outside of

the DBD had statistically significant effects on DNA binding

(�56%), including at positions not in contact with DNA (Fig-

ure 4D). As expected, mutating residues outside of the DBD

generally had little to no effect, whilemutations to the nucleotide-

and backbone-contacting residues typically reduced binding to

below the limit of detection (Figures 4D and 4E). Despite poor

sequence conservation of the bHLH loop region (Figure 3A), mu-

tations to residues in the loop close to either helix 1 or helix 2 had

strong effects on binding, likely due to either proximity to the

DNA molecule and known backbone-contacting residues or via

disruption of essential secondary structure (Figure S8). Although

mutations to strongly conserved residues tended to be more

deleterious overall (r2 = 0.41), effects were strongly mutation

dependent, with different substitutions at a given position

yielding changes in binding affinities that varied by �2 kcal/mol

(Figures S8 and S9). Protein variation effect analyzer (PRO-

VEAN), a computational algorithm designed to predict the

functional effects of mutations, was moderately successful at

predicting whether mutations with large energetic effects were

damaging or benign using a discrete cutoff (area under the curve

[AUC] = 0.82); however, the overall correlation between themag-

nitudes of predicted and observed effects was relatively poor

(r2 = 0.35) (Figure S9). Taken together, these results indicate

that, while phylogeny-based algorithms can broadly predict

whether a mutation will be benign or damaging (Dong et al.,

2015; Reeb et al., 2020), they cannot quantitatively predict ef-

fects on TF function upon mutation.

Multiple mutations to residues near DNA contacts and outside

of the DNA-binding domain significantly increased DNA affinity,

including H255R, which corresponds to a hotspot cancer variant

in the human MAX protein (Cerami et al., 2012; Gao et al., 2013;

Wang et al., 2017). These results suggest that this particular

variant may exact its deleterious effects by increasing nonspecific

binding to DNA in the genome. This is also consistent with prior

suggestions that TFs are evolutionarily selected to havemoderate

affinities in vivo to enable dynamic transcriptional responses to

changing nuclear TF concentrations (Gaudet and Mango, 2002;

Wang et al., 2017; Bruno et al., 2019; Kribelbauer et al., 2018)
(E) Median DDG of binding for all mutations binned by interaction with DNA base

Pho4 and background binding. DDGs above 0 kcal/mol indicate weaker binding th

type Pho4.

(F) Periodicity of effects on DNA binding (top) and indicated positions on Pho4 c

dashed line passes through alanine mutants.
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(Figures 4D and 4E). The removal of positively charged residues

in the N-terminal intrinsically disordered tail (Figure S10) yielded

small but statistically significant increases in DNA-binding affinity,

suggesting that charged residues outside the DBD might play a

role in DNA binding in Pho4 as reported for other TFs (Vuzman

and Levy, 2010, 2012; Shammas, 2017).

Systematic Mutagenesis Coupled to High-Resolution
Affinity Measurements Can Reveal Secondary Structure
Many TFs, including bHLHs, include large disordered regions

that are thought to assume a folded 3D structure only upon

binding DNA and, therefore, pose technical challenges for crys-

talization. We, therefore, sought to assess whether systematic

mutational scans coupled with quantitative affinity measure-

ments could reveal clues regarding secondary structures in the

absence of crystal structures or NMR data. Observed periodic

effects of mutations within helix 1 mapped to the reference

crystal structure (Shimizu et al., 1997) revealed that deleterious

mutations lie at the protein dimerization interface while benign

mutations can be found at the solvent-exposed exterior (Fig-

ure 4F). Moreover, valine substitutions tended to be more dele-

terious compared with alanine mutations at the DNA interface

(likely due to their steric bulk) while alanine substitutions were

disfavored compared with valine mutations at the protein-pro-

tein interface (likely due to disruptions in hydrophobic packing)

(Figure S12). Scanning mutagenesis with amino acid substitu-

tions of varied biochemical properties coupled to high-resolution

energetic measurements may, therefore, have utility for guiding

computational structural predictions and for explaining mecha-

nisms of residue function within a host protein.

Comparing Effects of TF Mutations across
Oligonucleotide Sequences Reveals Residues Involved
in Modulating Affinity and Specificity
TF mutations may alter transcriptional regulation by uniformly

modulatingDNA-binding affinity (i.e., altering affinity to all DNA se-

quences equally), modulating DNA specificity (i.e., differentially

affecting affinity for some DNA sequences), or a combination of

the two. To distinguish between affinity and specificity effects,

we systematically measured effects of TF mutations on binding

to 8 additional DNA sequences comprising single-nucleotide mu-

tations within the core 50-CACGTG-30 E-box motif as well as the

first flanking nucleotide on either side (Figures 5A and S12–S14).

Across all of our devices, Kd measurements are highly reproduc-

ible (Figure S15). The RMSE for Kd measurements ranges from

0.2 to 0.5 (based on log10-transformed Kd values in nM), corre-

sponding to affinity differences of 1.5- to 3-fold, with accurate

replication of measured values for Kd values up to �50 mM. For

DDG measurements, the calculated RMSE across replicates

ranges from 0.2 to 0.4 kcal/mol, with accurate replication of

measured DDGs up to 2.5–3.0 kcal/mol. Because measured Kd

values were significantly greater than Pho4 concentration in the

device (seeSTARMethods),Kdmeasurements remainunchanged
d on crystal structure (right) and labeled by statistical difference from wild type

an wild type Pho4; DDGs below 0 kcal/mol indicate stronger binding than wild

rystal structure (bottom). Data reflects median DDG (±SEM) for DNA binding;
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Figure 5. Effects of Pho4 Mutations on DNA Affinity and Specificity

(A) PWM logo and list of DNA sequences studied alongside effects on binding affinity (in nM) for all Pho4 variants studied. Black data points reflect median affinity

of wild type Pho4 for DNA sequence; vertical dashed line indicates median affinity of wild type Pho4 for the reference oligo 50-C CACGTG A-30.
(B) Normalized standard deviation versus normalized affinities for all Pho4 mutants indicating mutants with effects on affinity and/or specificity.

(C) Measured median binding affinities across experimental replicates for all TF mutations interacting with all oligonucleotides. Blue arrow indicates median wild

type Pho4 affinity for the low-affinity 50-C CACGTT A-30 sequence; red arrow indicates median wild type Pho4 affinity for the DNA sequence (50-G CACGTG C-30).
Points are colored by oligo identity, as in Figure 4A.

(legend continued on next page)

ll
Article

Cell Systems 12, 112–127, February 17, 2021 119



ll
Article
evenwith 2-fold changes in Pho4 available for binding in the assay

(Figure S16). In subsequent analyses, we aggregate measure-

ments across all replicates for a Pho4 variant andDNA oligonucle-

otide and then report the median Kd or DDG values (±SEM) for all

replicates over all experiments.

To identify mutants with statistically significant different bind-

ing from the wild type Pho4, we performed an independent t-test

for all mutants against wild type Pho4 and used a Bonferroni-cor-

rected p-value cutoff (based on a p-value of 0.05) to determine

significance. For most oligonucleotide sequences, the false-

negative rate ranged between 20%–30%; 5’-C CGCGTG A-3’

had a higher false-negative rate, likely due to the overall lower

number of replicates present (Figures S13 and S17). Mutations

in the core binding site had a slightly higher false-negative rate,

likely due to the lower dynamic range, as evidenced by an overall

smaller experimentally measured DDG range among Pho4 mu-

tants for those sequences.

Consistent with the known Pho4 position weight matrix (PWM)

and a variety of previous reports, we observed that mutations to

the core E-box motif significantly reduced affinity and a 50 C
flanking nucleotide was preferred (Fisher and Goding, 1992;

Maerkl and Quake, 2007; Le et al., 2018; Spivak and Stormo,

2012). Measured affinities were�3-fold weaker than seen previ-

ously (Maerkl and Quake, 2007), likely due to low levels of

nonspecific adsorption of expressed TFs on chamber walls

(see STAR Methods); comparisons to other quantitative mea-

surements of Pho4 DNA-binding affinity via EMSA (Cave et al.,

2000) showed nearly 10-fold differences in absolute affinity mea-

surements. However, we note that measuring in vitro binding af-

finities are a complex function of salt (Papaneophytou et al.,

2014), crowding agents, and assay temperature. Indeed, a prior

study of the sameDNA sequence using a different technique (cir-

cular dichroism [CD] spectroscopy) resulted in Kd measure-

ments that differed nearly an order of magnitude (Cave et al.,

2000). In addition, affinity measurements are sensitive to distal

sequences outside of the consensus binding site (Afek et al.,

2014), which differed among these assays. DDGs are a relative

measurement and are, therefore, unaffected.

To identify TF mutants with affinity or specificity effects across

multiple DNA sequences, we quantified the spread in measured

DNA-binding affinities (standard deviation) normalized by the

median affinity of all assayed Pho4 variants for each oligo

log10ðKdÞi;j=medianðlog10ðKdÞjÞ, where i is a particular TF muta-

tion and j is a particular oligonucleotide mutation (Figure 5B).

Overall, standard deviations increase as measurements diverge

toward very high or low affinity (particularly for core mutations),

reflecting increased measurement noise toward the dynamic

range limits of the assay. For very-low-affinity binders, the frac-

tional uncertainty in Kd values returned by the global fits be-

comes very large. For very-high-affinity binders, the uncertainty

again increases, as there are fewer DNA concentrations

measured within the linear binding regime. Several mutants

(H255R, A289R, and A289K) increase the median affinity without

increasing the standard deviation, likely by positioning positively
(D) Proportions of mutations that statistically significantly enhance DNA-binding

(E) Binding affinities for wild type Pho4 and H255R, A289K, and A289R mutants

(F) Binding affinities for Pho4 H257A (helix 1) and R301A (helix 2) interactin

affinity ± SEM).
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charged residues in proximity to the negatively charged DNA

backbone (Figures 5B and S18). Several mutations to critical

DNA-contacting residues, R262Y and H255N, both of which

are observed in the phylogenetic record (Kim et al., 1995; Shi-

mizu et al., 1997; del Olmo Toledo et al., 2018; Figure 2A), ap-

peared to increase the variance in measured affinities (see

STAR Methods), suggesting that these mutations may primarily

alter specificity (Figure 5B).

Measured affinities plotted as a function of mutated residue

position for all 1,853 unique TF-DNA mutant pairs reveal several

striking trends (Figure 5C). In vivo, wild type Pho4 binds both the

reference E-box sequence (50-CACGTG-30) and a known biolog-

ically relevant low-affinity site (50-CACGTT-30) (Barbari�c et al.,

1996; Zhou and O’Shea, 2011). We, therefore, used these values

as guidelines for establishing a range of physiologically relevant

binding (Figure 5C). For wild type Pho4 and mutations outside of

the DBD, changes to less favorable flanking nucleotides or mu-

tations in the core binding site typically reduced affinities by

�4 and �20-fold, respectively, preserving low-to-medium-affin-

ity binding. For many residues within the DBD (and particularly

for those that make direct contacts with DNA), the combined ef-

fects of TF and DNAmutations reduced binding to that of the dy-

namic range floor (Figure 5C). However, a large number of DBD

mutants retained the ability to bind oligonucleotides containing

flanking sequencemutations with a range of physiologically rele-

vant binding affinities. Overall, 128 of the 151 mutants with

altered binding relative to the wild type protein retained the

ability to bind at least some oligonucleotides at levels above

background. Moreover, some of these mutants have differential

effects for different flanking sequences. Thus, combinations of

mutations in cis and trans allow for the generation of large ranges

of binding affinities and ‘‘tuning’’ of TF occupancies in vivo.

Differences in Electrostatics and Helical Propensity
Modulate Binding Affinity
Closer examination of residues that significantly increased DNA-

binding affinity revealed thatmany appeared to introduce an addi-

tional positive charge near the DNA (�50%, as for H255R, A289K,

and A289R) (Figures 5D, 5E, and S19). However, a large fraction

did so without altering charge at DNA-contacting residues,

including H257A and R301A (Figures 5D and 5F). Approximately

32% of mutations found to enhance affinity were primarily alanine

or valine substitutions at solvent-facing residues (Figures 5D, 6A,

and S19), highlighting the role of non-contacting and distal amino

acid residues in dictating binding affinity and spurringmechanistic

questions regarding how they exert their effects.

Prior studies have revealed that helix 1 of Pho4 and other

bHLH TFs are unstructured in the absence of DNA and adopt a

primarily helical conformation upon binding cognate DNA

(Cave et al., 2000; Sauvé et al., 2004). Prior work has shown

that modulating the helical propensity of TF sequences can

tune binding affinity for DNA sequences containing the E-box

motif by stabilizing the helical conformation of the TF (Kunne

and Allemann, 1997; Turner et al., 2004) (Figure 6B). To test if
affinity.

(median affinity ± SEM).

g with DNA sequences containing flanking nucleotide mutations (median
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Figure 6. Solvent-Facing Residues Modulate Affinity by Tuning Helical Propensity

(A) Crystal structure of Pho4 with basic region and helix 1 highlighted (cyan); right, inset of solvent-facing residues in this region.

(B) Schematic reaction coordinate diagram for wild type (solid black line) and mutated Pho4 (cyan dashed line) in which the mutant construct has higher helical

stability.

(C) Measured change in DNA-binding affinity (DDG, median ± SEM) for the 50-C CACGTG A-30 reference oligonucleotide versus previously measured changes in

helical propensity for individual residue substitutions (O’Neil and DeGrado, 1990); dashed line indicates linear regression.
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changes in helical propensity were sufficient to explain observed

differences in measured binding affinity for alanine and valine

mutants, we compared measured changes in Gibbs free energy

of binding with previously determined changes in Gibbs free en-

ergy for helix formation (O’Neil and DeGrado, 1990) for all resi-

dues near DNA-contacting residues (Figure 6A) and found that

these were highly correlated (r2 = 0.58; RMSE = 0.70 kcal/mol)

(Figure 6C). As expected, measured DDG values for mutations

at nucleotide-contacting residues in helical regions were domi-

nated by changes in hydrogen bonding and only weakly corre-

lated with predicted changes in helical propensity (r2 = 0.27;

RMSE = 2.0 kcal/mol; Figure S20A), and mutations to residues

in the loop region, which remains unstructured regardless of

DNA binding, showed no correlation (r2 = 0.0089; RMSE =

1.2 kcal/mol; Figure S20B). We observed that distal mutations

of amino acid residues to alanine or valine also enhanced affinity

and coincided with helical regions in the loop and helix 2 of Pho4.

Analysis (Figure S21) only showed minor correlation (r2 = 0.33)

with a helical propensity, likely due to the distance away from

the DNA molecule and highly preformed helical content in the

absence of DNA (Cave et al., 2000; Sauvé et al., 2004). Together,

these results strongly suggest that mutations in helical regions

that modulate the equilibrium between unstructured and helical

conformations can tune TF binding.
Double-Mutant Cycles across the TF-DNA Interface Can
Reveal Intermolecular Interactions Required for
Recognition
Beyond simply cataloging effects, this set of 1,853 quantitative

affinities provides a unique opportunity to measure the strength

of intermolecular interactions across the TF-DNA interface via

biochemical double-mutant cycles (Horovitz, 1996; Horovitz

et al., 2019). In general, we expect that mutating TF amino acid

residue(s) essential for recognizing a particular nucleotide will

be relatively less deleterious upon that nucleotide’s mutation.

As a simplified example, consider a TF that binds a DNA

sequence such that residue 1 does not directly contact any nu-

cleotides but residue 2 makes direct contact with nucleotide 2
(Figure 7A). For residue 1, mutating this residue will have the

same relative effect on affinity regardless of the oligonucleotide

sequence. For residue 2, mutating this residue will significantly

reduce binding to the wild type oligonucleotide but have a less

deleterious effect for an oligonucleotide in which nucleotide 2

has been mutated. Systematic comparisons of the relative ef-

fects on affinity for all TF mutants for each DNA sequence can

therefore provide a comprehensive method for revealing func-

tional interactions required for specific recognition and binding.

As the first application of this approach, we compared affinities

measured for the Pho4 mutant library interacting with the biolog-

ically relevant low-affinity 50-CCACGTTA-30 site and theWT refer-

ence E-box sequence (50-C CACGTG A-30). The crystal structure

for Pho4 bound to a DNA duplex containing a 50-C CACGTG T-30

suggests a direct contact between the H255 residue and the final

G nucleotide within the E-box (Figure 7B, inset), predicting that

mutatingH255 should have differential effects for sequences con-

taining a G or a T at this position. As expected, measured affinities

were weaker overall for themutant DNA sequence, withmostmu-

tants having similar effects (Figures 7B, S22, and S23; r2 = 0.84).

However, several mutants were significantly less deleterious for

binding the mutated DNA sequence than the cognate DNA

sequence, including the expected H255 mutants (H255R,

H255N, andH255V), and E259D. Inspection ofmeasured concen-

tration-dependent binding curves confirmed energetic non-addi-

tivity for combined TF and DNA mutations (Figures S23D–S23F).

Additional observed energetic effects can be explained by previ-

ously observed structural contacts; for example, E259 residue

contacts the C nucleotide base-paired with the G on the opposite

strand. These results, therefore, establish that double-mutant cy-

cles across the TF-DNA interface via STAMMP represent a high-

throughput approach for detecting relevant functional interactions

required for recognition.
Double-Mutant Cycles Reveal TF Residues Required to
Specify Flanking Nucleotide Preferences
For Pho4, preferences for nucleotides flanking the core

consensus site play a critical role in dictating in vivo
Cell Systems 12, 112–127, February 17, 2021 121
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Figure 7. Pairwise Affinity Comparisons Reveal Determinants of Binding Specificity

(A) Example cartoon illustrating how epistasis between Pho4 andDNAmutations can be detected by comparing energetic effects of TFmutations across different

DNA sequences.

(B) Pairwise comparison between measured binding affinities (log10(Kd), median ± SEM) for Pho4 mutants interacting with a low-affinity mutant sequence (50-C
CACGTT A-30) versus the medium-affinity reference sequence (50-C CACGTG A-30) (left); inset of crystal structure with outlier TF residues labeled.

(C) Pairwise comparison between measured binding affinities (log10(Kd), median ± SEM) for 2 DNA sequences with 50 flanking nucleotide mutations (left); inset of

crystal structure indicating residues H257, A258, and Q260 (right).

(D) Comparison between identified energetic couplings identified in this study and known crystallographic contacts.
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occupancies, rates of gene activation, and levels of induction

(Aow et al., 2013; Gordân et al., 2013; Rajkumar et al., 2013;

Le et al., 2018). However, the residues responsible for mediating
122 Cell Systems 12, 112–127, February 17, 2021
this specificity remain unknown. While the crystal structure of

Pho4 suggested that DNA-contacting residues R252 and H255

mediate specificity (Shimizu et al., 1997), mutagenesis studies
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of Pho4 studies have implicated residues outside of the DBD

(Fisher and Goding, 1992) and demonstrated that mutations in

orthologous TFs corresponding to the Pho4 A258 residue can

alter flanking nucleotide specificity (Beltran et al., 2004).

To investigate the origins of flanking nucleotide specificity, we

compared measured affinities for a sequence in which the first 50

flanking nucleotide was mutated to a T (50-T CACGTG C-30) with

those for a 50-G CACGTG C-30 variant (Figures 7C and S24).

Although measured affinities for the mutant oligonucleotide

were slightly weaker for nearly all mutants, a small set of mutants

bound the flanking 50 T nucleotide more tightly. This set included

multiple mutations to H255, consistent with previous findings

that this residue helps mediate flanking nucleotide specificity

(Shimizu et al., 1997). However, we also detected enhanced

binding for the A258R, Q260K, and H257V variants (Shimizu

et al., 1997; Beltran et al., 2004) (Figures 7C and S24D–S24F),

establishing that mutations within the DBD can alter specificity

(Figure 7C). These substitutions include both aliphatic and posi-

tively charged residues, suggesting that introducing steric bulk

at the DNA interface (such as A to R, and Q to K substitutions)

maymodulate flanking nucleotide specificity (Fisher andGoding,

1992). H257 is a solvent-facing residue on the same helix as

A258 and Q260, suggesting that H257V might alter the confor-

mation of residues A258 and Q260 or the overall helicity of the

TF to modulate binding specificity.

Repeating this analysis for mutations throughout the core

binding site recapitulatedmany contacts predicted by the known

crystal structure (Figures 7D and S23–S28). For mutations that

abolish binding across all oligonucleotides (e.g., mutations at

R263 and most backbone-contacting residues) (Figures 7D

and S23–S28), double-mutant cycle analysis cannot quantify

epistasis; however, these critical contacts are typically easily

identified from phylogeny. We observed a case in which a known

backbone-contacting residue of Pho4, R262, can affect DNA-

binding specificity upon mutation. While backbone-contacting

residues have been shown previously to mediate specificity via

‘‘indirect readout’’ mechanisms (De Masi et al., 2011; Gordân

et al., 2013; Slattery et al., 2014), we note here that R262Y was

the only mutant at either position 262 or 263 still capable of bind-

ing DNA. The finding is consistent with phylogenetic data

showing that the human bHLH family member SREBP1 contains

a tyrosine at the orthologous position and that this mutation en-

hances conformational flexibility to allow binding to varied E-box

sequences (del Olmo Toledo et al., 2018; Párraga et al., 1998;

Figure S29). In addition, this analysis identified specificity-

altering mutations (e.g., H255N and R262Y) that cannot be pre-

dicted from a crystal structure crystalized in the presence of a

single DNA sequence. High-throughput thermodynamic mea-

surements can, therefore, complement and supplement tradi-

tional structural analysis for identifying macromolecular

contacts.

DISCUSSION

Here, we present STAMMP, which enables quantitative mea-

surements of DNA-binding affinities across >1,500 TF variants

within a single experiment. Using this system, we measured ab-

solute and relative binding energies for �210 Pho4 mutants in-

teracting with multiple DNA sequences, including substitutions
at positions spanning the core binding site and the 50 and 30

flanking nucleotides. In total, 76% (n = 163) of TF mutations

led to statistically significant differences in DNA binding; of

these, 80% (n = 133) preserved binding above background

levels. A large fraction of these residues does not directly contact

DNA (either nucleobases or the backbone), suggesting that

many poorly conserved positions that were previously unex-

plored experimentally may play critical roles in specifying and re-

modeling transcriptional responses.

Mutations in cis have long been considered the primary drivers

of evolutionary variation (Nelson et al., 2013; Wong et al., 2017),

as TFmutations can have pleiotropic effects on the cellular func-

tion that limit evolvability and diversification of genetic networks

(Signor and Nuzhdin, 2018). These conclusions have been

further bolstered by experimental evidence that mutations to

DNA-contacting residues or core consensus nucleotides often

ablate binding (Maerkl and Quake, 2009; De Masi et al., 2011),

creating large fitness penalties that pose evolutionary barriers.

Here, the ability to assess many mutations in parallel and mea-

sure even subtle differences in affinity suggests that effects of

mutations in trans could be compensated for by concomitant

changes in nucleotides flanking cis-regulatory elements to pre-

serve transcriptional responses (Beltran et al., 2004; Rogers

and Bulyk, 2018). In addition, the observation that mutations

may stabilize helical conformations to promote DNA binding

suggests that these residues could allow the formation of

permissive binding intermediates (Bloom et al., 2010; Gong

et al., 2013; Jalal et al., 2020; McKeown et al., 2014; Starr

et al., 2017). The higher affinity binding of these permissive bind-

ing intermediates could allow TFs to acquire and accommodate

additional TF or DNA mutations that would otherwise reduce

binding to non-physiological levels, making otherwise inacces-

sible evolutionary trajectories feasible.

Obtaining structures for TFs is often technically challenging

because many TFs assume a folded conformation only upon in-

teracting with a consensus binding site and contain large, intrin-

sically disordered domains. Reflecting this, of 1,639 predicted

TFs in the human genome, only 185 (�11%) have crystal

structures available Lambert et al., 2018b. Of these structures,

most are solely composed of the DBD alone and are crystallized

only in the presence of a single high-affinity DNA sequence.

STAMMP can provide critical functional information about resi-

dues within intrinsically disordered regions previously shown to

be important for DNA binding and dynamic protein-DNA recog-

nition (Vuzman and Levy, 2012; Shammas, 2017; Ferreiro et al.,

2008; Fuxreiter et al., 2011). Moreover, the ability to return quan-

titative affinity measurements for multiple oligonucleotide se-

quences provides critical information required to probe the

mechanistic origins of specificity and extract energetic informa-

tion from crystalized structures (Farrel et al., 2016).

The experimental difficulty of quantitatively assaying effects of

protein mutations has led to the development of various compu-

tational algorithms that use combinations of phylogeny (Ng and

Henikoff, 2003; Hopf et al., 2017; Choi et al., 2012), structure

(Adzhubei et al., 2010; Blanco et al., 2018), and prior experi-

mental measurements (Pelossof et al., 2015) to predict muta-

tional effects on DNA binding. While these computational

models have shown some success in predicting if particular dis-

ease-associated mutations ablate DNA binding, our
Cell Systems 12, 112–127, February 17, 2021 123
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comparisons between computational predictions and experi-

mental data further reinforce that these algorithms’ abilities to

produce quantitative predictions of mutational effects are

modest and typically underestimate effects of mutations to

poorly conserved, non-contacting residues (Miller et al., 2017;

Reeb et al., 2020). In future work, we anticipate that STAMMP

datasets may serve as critical resources for testing, revising,

and refining computational algorithms. Furthermore, systematic

studies of TFs at this resolution may reveal context depen-

dencies for effects of TF mutations and mechanisms by which

sequence variation within structurally related TFs give rise to dif-

ferences in sequence preference (Berger et al., 2008; Salisbery

et al., 2012).

Within the cell nucleus, TF-DNA interaction affinities over a

wide physiological range precisely specify transcriptional pro-

grams (Farley et al., 2015; Kribelbauer et al., 2019; Le et al.,

2018), and even subtle decreases or increases to affinity can

alter transcription rate and disrupt overlying genetic circuits

(Gaudet and Mango, 2002; Meinhardt et al., 2013; Farley et al.,

2015; Crocker et al., 2016; Wang et al., 2017; Bhimsaria et al.,

2018; Le et al., 2018; Nishizaki et al., 2020). For most mutations

attempting to recapitulate disease-associated human variants,

binding affinity was reduced to background levels as previously

reported (Wang et al., 2017). However, one mutant designed to

mimic disease-associated orthologs (H255R) increased DNA-

binding affinity across a broad spectrum of DNA sequences,

suggesting that enhanced affinity may drive disease by altering

transcriptional programs. This observation is consistent with

prior studies suggesting that TF affinities must be appropriately

tuned for function, that very-high-affinity DNA-binding sites

can be statistically significantly underrepresented within ge-

nomes (Le et al., 2018), and that TF sequences are evolved for

submaximal binding strength (Bruno et al., 2019). Moreover,

these results imply that, in some cases, appropriate therapeutic

interventions could attempt to disrupt (rather than restore)

binding.

In future work, the ability to express and functionally charac-

terize hundreds of TF mutants in a single experiment at low

cost enables a wide variety of precision medicine applications.

STAMMP could be used to systematically assess the effects of

disease-associated TF variants, thereby providing an additional

high-throughput method for assessing functional consequences

of variants of unknown significance (Gasperini et al., 2016; Ma-

treyek et al., 2018; Federici and Soddu, 2020). STAMMP could

also be extended toward testing compounds for their potential

to drug TFs and serve as new cancer therapeutics (Struntz

et al., 2019; Lambert et al., 2018a).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal Anti-GFP Antibody (Biotin) Abcam Cat#ab6658; RRID: AB_305631

Bacterial and Virus Strains

NEB 5-alpha Competent E. coli New England Biolabs C2987I

Chemicals, Peptides, and Recombinant Proteins

NEBuffer 2 New England Biolabs B7002S

Trizma hydrochloride Sigma Life Science T3253-500G

NaCl, BioUltra Sigma Life Science 71376-1KG

UltraPure BSA ThermoFisher AM2618

Biotinylated BSA ThermoFisher Pierce 29130

NeutrAvidin Thermo Scientific 31000

Phosphate Buffered Saline (10X) Corning 46-013-CM

Bovine Serum Albumin (Heat shock

fraction)

Sigma Life Science B4287-25G

Trehalose Dihydrate Sigma Life Science T9531-25G

Klenow fragment, exo- In-house stock N/A

Critical Commercial Assays

PURExpress In Vitro Protein Synthesis Kit New England Biolabs E6800L

RNAsin Ribonuclease Inhibitor Promega N2515

TrypLE ThermoFisher 12604-013

Deposited Data

Raw binding measurements,

analytical code

This paper https://doi.org/10.17605/OSF.IO/8QRZP

Oligonucleotides

Primers for Binding assays, see Table 1

(Methods)

This paper N/A

Recombinant DNA

Plasmid: PURExpress Pho4-monomeric

eGFP fusion

This paper N/A

Software and Algorithms

Biopython Cock et al., 2009 https://biopython.org/

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

ImageStitcher This paper, Github https://github.com/FordyceLab/

ImageStitcher

ProcessingPack This paper, Github https://github.com/FordyceLab/

ProcessingPack-STAMMP

RunPack This paper, Github https://github.com/FordyceLab/RunPack-

STAMMP

PROVEAN Choi et al., 2012, 2015 http://provean.jcvi.org/index.php

mManager Edelstein, et al., 2014 https://micro-manager.org/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Polly

Fordyce (pfordyce@stanford.edu).
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Materials Availability
Plasmids generated in this study are available upon request to the lead contact.

Data and Code Availability
Source Data

Raw binding affinity measurements and data for all supplemental binding curves have been deposited at Open Science Framework

(DOI: 10.17605/OSF.IO/8QRZP). Accessory data (eg. PROVEAN results, conservation calculations, helical propensity information)

are available in the ‘‘Accessory Data’’ subfolder within the ‘‘Information for Aggregate Analysis’’ folder.

Original code is publicly available at the Open Science Framework (OSF: https://doi.org/10.17605/OSF.IO/8QRZP) under the

‘‘Raw Code’’ Folder. Automation software associated with experimental and microscopy setups is located at https://github.com/

FordyceLab/RunPack-STAMMP. Software for processing images is available at https://github.com/FordyceLab/ImageStitcher.

Analytical software is available at https://github.com/FordyceLab/ProcessingPack-STAMMP. Use of other software is described

in the STAR Methods section.

The scripts used to generate the figures reported in this paper are available at (OSF: https://doi.org/10.17605/OSF.IO/8QRZP) un-

der the ‘‘Raw Code’’ Folder. Names of files indicate source code and scripting for generating pertinent figures.

Any additional information required to reproduce this work is available from the Lead Contact.

METHOD DETAILS

Mold and Device Fabrication
Flow and control molding masters were fabricated as described previously (Fordyce et al., 2012; Le et al., 2018). Two-layer micro-

fluidic devices were then cast from these molds using polydimethylsiloxane (PDMS) polymer (RS Hughes, RTV615). Control layers of

the microfluidic device (Figure S1, orange) were generated by pouring 60 grams of PDMS (1:5 ratio of cross-linker to base) onto the

molds, degassing to remove all air in a vacuum chamber under vacuum for�45 minutes, and baking for 40 minutes at 80�C in a con-

vection oven. After this step, control layers for each device were cut out and removed from the wafer and the fluid line inlets were

punched using a catheter hole punch (SYNEO, CR0350255N20R4) mounted onto a drill press (Technical Innovations). The flow layer

(Figure S1, blue/green) was generated by spin-casting PDMS (1:20 ratio of cross-linker to polymer) onto the molds at 266 rpm for 10

sec, followed by 1750-1850 rpm for 75 seconds. Layers were relaxed on a flat surface for 10 minutes at room temperature prior to

baking at 80�C for 40minutes in an oven. Cut and punched device control layers were then aligned to flow layers remaining onmaster

molds manually using a stereoscope. Aligned devices were then baked for 40 minutes at 80 �C in an oven, excised from the molds

using a scalpel, and the remaining flow-layer fluidics inlets made using the same catheter punch as above.

Pho4 Structural Examination
Categorization of Residues by Interaction with DNA

DNA backbone and nucleotide contacts for Pho4 (Figure S4) were inferred from the available crystal structure (Shimizu et al., 1997;

PDB: 1A0A). To identify other residues likely making hydrogen-bonded contacts with DNA, we used NUCPLOT interpretations of the

crystal structure (Luscombe et al., 1997) to cross-validate. Based on these, we considered residues 251, 253, 256, 260, 265, 288,

289, 291, and 292 as backbone-contacting; residues 252, 255, 259, and 263 were considered nucleotide-contacting.

To identify residues responsible for Pho4 homodimerization, we examined the crystal structure and the PDBSum protein-protein

contact map (Laskowski et al., 2018). Based on this contact map, we identified residues 266, 293, 270, 276, 269, 294, 297, 302, 303,

300, 273 as protein-protein contact residues.

We categorized residues as ‘‘near DNA contact residue’’ if they were within 12 amino acids (in linear sequence space) of a DNA-

contacting residue within the Pho4 primary sequence. We identified residues 250, 254, 257, 258, 261, 264, 265, 287, and 290 in this

category.

Finally, we categorized residues 230-249 and 307-312 as lying outside of the DNA-binding domain based on the Pho4’s domain

annotation from UniProt. Other residues which did not fit into these categories were categorized as ‘‘other.’’

Prediction of Intrinsically Disordered Tail
To predict the intrinsic disorder of the Pho4 DNA binding domain and N-terminal residues preceding the DNA-binding domain, we

used the IUPred2A algorithm (Mészáros et al., 2018; Erd}os and Dosztányi, 2020). We analyzed the entirety of the Pho4 reading frame

using the default IUPred2 long disorder setting and analyzed data using the IUPred scores returned by the program. For this analysis,

we considered scores above 0.5 as being disordered as previously noted (Erd}os and Dosztányi, 2020).

High-Throughput QuikChange Mutagenesis
Pho4 Plasmid

Prior to Pho4 mutant library generation, we generated a version of the PURExpress control expression plasmid (containing a T7 pro-

moter and an ampicillin selectable marker) in which we inserted the full coding sequence for WT Pho4 fused to a C-terminal mono-

meric GFP tag (Zacharias et al., 2002) with an intervening gly-ser linker (GGGSGGGGSG). This insertion was sequence-validated via

Sanger sequencing and all subsequent mutagenesis used this sequence as a plasmid template.
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Primer Design

Mutagenic primers were designed using an in-house automated script (https://github.com/FordyceLab/designQuikChangePrimers).

Briefly, the program takes as input a list of desiredmutations (e.g. ‘‘H255R’’ for His 255 to Argmutation) and the protein ORF sequence.

For each desiredmutation, the script generates different primer candidates by varying the primer length and the position of themutation

site relative to the center of the primer. Candidates were scored using heuristics based on the manufacturer’s recommendations

included in the QuikChange (Agilent) protocol. First, we selected themutagenic codon requiring the smallest number of nucleotidemis-

matches. Next, we calculated the primer scores as follows: (1) we calculated the annealing temperature (Tm) according to the formula

given in theQuikChangemanual and scored primers such that amaximumscore of 2was given for 78%Tm<82�Cand this score linearly

decreased (with slope=1) for each 1�C change outside this range; (2) we added an additional score of 1 for a G-C base pair at the 5’ or

the 3’ end; (3) we subtracted between 0.25 and 1 if the primer was predicted to have 3’ self-complementarity, depending on the degree

of predicted self-complementary; (4) we subtracted 0.25 from the score if the first two 5’ or 3’ bases were the same, tominimize the risk

of slippage at the ends; (5) wepenalized primer candidates longer than38bp (as longasTmwas> 79�C) to reduceoligo synthesis costs;
and (6) we calculated predicted primer hairpin temperatures using the primer3-py ‘calcHairpin’ function (Untergasser et al., 2012) and

performed an additional round of optimization if the primer had a predicted hairpin with melting temperature >50�C to decrease this

melting temperature, if possible. The final primerwas chosenbased on the highest cumulative score. Additional details regarding primer

optimization calculations are available in theGithub repository. Optimized primerswere subsequently ordered from IDT (IntegratedDNA

Technologies) at the 10 nmol synthesis scale in a 96-well plate format with standard desalting purification. These primers were normal-

ized at 6 nmol per well with forward and reverse primers encoding mutations premixed in each well and shipped dry.

QuikChange Mutagenesis
Primers were resuspended in 120 mL of Milli-Q H2O and left at room temperature to allow primers to solubilize for approximately 1

hour, creating working stock solutions of 50 mM for downstream PCR. Using a 96-channel manual pipettor (Liquidator, Rainin), we

added 5 mL of solubilized primers to 195 mL ofMilli-Qwater to dilute to aworking concentration of 1.25 mMandmixedwell by pipetting

up and down. Finally, we transferred 6 mL of these diluted primers to a new 96-well plate before adding QuikChange reaction Master

Mix to all wells (as described below).

We prepared the QuikChange master mix (Agilent Technologies, New England Biolabs) by scaling the single reaction recipe as

necessary and keeping on ice prior to use:

Per Single Reaction

14 mL deionized H2O (e.g. Milli-Q H2O)

2.5 mL 103 Pfu buffer (AD)

0.25-mL Plasmid template (100 ng/mL)

1.25 mL DMSO (5% v/v)

0.5 mL dNTPs (final concentration: 200 mM)

0.5 mL Pfu turbo polymerase (AD) (0.05 Units)

6 mL Forward and Reverse primers (300 nM)

After preparation of the Master Mix, we added 19 mL of this Master Mix into each well using a multichannel pipette and mixed well.

We then sealed plates with foil, centrifuged briefly, and placed them into the thermocycler for the PCR reaction according to man-

ufacturer’s protocols (Agilent QuikChange Manual).

Next, we treated reactions with Dpn1 enzyme (New England Biolabs, R0176L) to digest any remaining WT plasmid. To do this, we

took 10 mL of the above mutagenesis reaction, and added 10 mL of Dpn1 reaction mix (1 mL Dpn1, 2 mL CutSmart Buffer, and 7 mL

deionized H2O). These reactions were well-mixed via pipetting and incubated on a thermocycler with the following protocol.

37�C, 3 hrs

80�C, 20 min

4�C, hold

We then used 1 mL of each reaction to transform 5 mL ofE. coliDH5a cells (NewEngland Biolabs, C2987I). The cells and PCR product

were left on ice for 30 minutes, heat-shocked at 42�C for 30 seconds, and recovered in 300 mL SOCMedium (NEB, B9020S) for 1 hour

prior to plating on LB agar plates supplemented with ampicillin (100 mg/mL). Plates were kept at 37�C overnight to grow colony trans-

formants. Single colonies from these plates were then picked and grown at 37�C in 6–8mL of LBmedium supplemented with ampicillin

(100mg/mL) overnight; plateswere subsequently stored at 4 �C in case additional colonies need to bepicked.Weminiprepped plasmids

using Qiagen miniprep reagents and validated proper mutagenesis via Sanger sequencing. Colonies were re-picked if the sequencing

revealed a wildtype Pho4 clone, an errant mutation elsewhere in the construct, or poor sequencing quality. In cases where no trans-

formants appeared after the mutagenesis reaction, we repeated QuikChange reactions with manually designed primers.

Plasmid Array Printing
Prior to printing, we transferred 10 mL of the plasmid solution from each well of the 96 well to 2 different wells within 384 well plates

(Thermo Scientific, AB-1055) using a Biomek FX Automated Workstation (Beckman Coulter, model A31843), recording plasmid
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locations tomapmutants to chambers in downstream experiments. To standardize well volumes, we then evaporated all wells within

the 384 well plates to dryness and re-solubilized in 12–15 mL of print solution formulated as follows:

1% (10 mg/mL) Bovine Serum Albumin (Sigma Life Science, B4287-25G)

200mM (11.65mg/mL) NaCl (Sigma Life Science, 71376-1KG)

12mg/mL trehalose dihydrate (Sigma Life Science, T9531-25G)

These ingredients were combined and dissolved inMilli-QH2Oand filter sterilized prior to use (Millipore, SE1M179M6).When not in

use, we stored the print solution and plates with plasmids at 4�C. For longer term storage, we sealed plasmid plates with foil and

stored at -20�C.
Prior to printing, all plates were defrosted at 4�Covernight and then centrifuged at 4�C (2000g for 10minutes).We arrayed plasmids

onto epoxysilane-coated 2"x3" glass slides (Thermo Scientific, UCSF2X3-C50-20) using a custom built microarrayer outfitted with

silicon pins (Parallel Synthesis Technologies, SMT-S75). To prevent contamination of DNA during prints, pins were washed twice in

near-boiling water for 10 seconds, followed by vacuum drying for 8 seconds. After arrays dried overnight, we aligned fabricated

PDMS devices onto printed plasmid arrays such that each plasmid spot was isolated in its own unique chamber within the device.

Devices were then bonded to the glass slides by baking for 4–12 hours at 95�C on a hotplate (Torrey Pines Scientific) prior to running

experiments.

Preparation of Fluorescently-Labeled dsDNA for Binding Assays:
DNA Sequences Studied

All DNA sequences were designed with a universal complementary 30 region to allow annealing of a single 50 AlexaFluor-647-conju-
gated DNA primer to all sequences (calculated Tm of this annealing was 37�C) (STAR Methods Table).
Name Full Sequence (5’ to 3’)

CCACGTGA CAATACACTGTTATC AGACC CAC

GTG ACGAG CTACTCGTTCGGTTA

TCCGGCGGTATGAC

TCACGTGC CAATACACTGTTATC AGACT CACG

TG CCGAG CTACTCGTTCGGTTATC

CGGCGGTATGAC

ACACGTGA CAATACACTGTTATC AGACA CACG

TG ACGAG CTACTCGTTCGGTTAT

CCGGCGGTATGAC

GCACGTGC CAATACACTGTTATC AGACG CACG

TG CCGAG CTACTCGTTCGGTTAT

CCGGCGGTATGAC

CAACGTGA CAATACACTGTTATC AGACC AAC

GTG ACGAG CTACTCGTTCGGTT

ATCCGGCGGTATGAC

CCGCGTGA CAATACACTGTTATC AGACC CGC

GTG ACGAG CTACTCGTTCGGTT

ATCCGGCGGTATGAC

CCATGTGA CAATACACTGTTATC AGACC CAT

GTG ACGAG CTACTCGTTCG

GTTATCCGGCGGTATGAC

CCACGCGA CAATACACTGTTATC AGACC CAC

GCG ACGAG CTACTCGTTCGGTTA

TCCGGCGGTATGAC

CCACGTTA CAATACACTGTTATC AGACC CAC

GTT ACGAG CTACTCGTTCGGTT

ATCCGGCGGTATGAC

‘‘Universal’’ AlexaFluor-647-5’-

GTCATACCGCCGGA-3’
STAR Methods Table. DNA oligonucleotide sequences used in these experiments. For each sequence, the 8 bp TF consensus

site is shown in bold, the single nucleotide variant is underlined, and the universal 3’ sequence used for annealing a 5’ Alexa-647-

conjugated sequence is shown in italics.
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Double-Stranded DNA Preparation and Dilution
We ordered nearly all DNA sequences as a single strand from Integrated DNA Technologies (IDT) with standard desalting purification

and ‘LabReady’ formulation (100 mM in IDTE buffer, pH = 8.0); for several oligonucleotides ordered dry, we resuspended the oligo-

nucleotide in Milli-Q H2O to a final concentration of 100 mM (confirmed using a DeNovix instrument). We then converted these ssDNA

sequences to fluorescently-labeled double-stranded DNA via: (1) annealing of a universal 5’-AlexaFluor-647-labeled primer to all se-

quences, and (2) extension using Klenow fragment, exo-. To minimize variation in measured fluorescence intensities between runs,

we prepared fresh labeled dsDNA on the day of each experiment.

To begin annealing and extension reactions, we defrosted NEBuffer 2 (New England Biolabs, B7002S) and dNTPs (100 mM,

Thermo Scientific) and kept them on ice. Next, we prepared two annealing reactions, formulated as follows:

12 mL single-stranded DNA (100mM)

12 mL ‘‘Universal’’ primer (100uM)

12 mL dNTP mixture (4 mM)

4 mL NEBuffer 2 (10x stock)

We then performed the annealing reaction using the following protocol on a thermocycler:

94�C, 3 min

Cool to 37�C over 45 minutes

To extend the annealed universal primer, we removed the tubes from the thermocycler, spun them down using a centrifuge, added

the following, and mixed well via pipetting:

8 mL of Milli-Q H2O

1 mL of NEBuffer 2 (10x stock)

1 mL of Klenow enzyme (made in-house)

The tubes were then placed back in the thermocycler for the extension step of the protocol:

37�C, 60 min

80�C, 20 min

10�C, hold
After the extension step, we again centrifuged the tubes using a table-top microcentrifuge and placed them on ice. To remove any

aggregates that could clog the microfluidic channels on the device, we sterile filtered reactions with a 0.45um filter spin column

(Merck Millipore, UFC30HVNB). Finally, we equilibrated dsDNA reactions in the final assay buffer (10mM Tris-HCl, 100mM NaCl,

1mM DTT, pH 7.5; aliquoted and filtered using 0.45 mM Steriflip vacuum (Millipore, SE1M179M6) using 10K filter spin concentrator

columns (Amicon Ultra, UFC501096). To do this, we added 100 mL of the duplexing reaction in the filter spin concentrator, added

200 mL of assay buffer (�300 mL total volume), and spun down to concentrate back to 100 mL via centrifugation (8000-9000g for 8 mi-

nutes); this process was repeated 5 times. After the final step, we eluted the DNA by inverting the filter into the collection tube and

centrifuging at 3000g for 5 minutes.

For each DNA concentration series, we serially diluted this eluent 1:2 in assay buffer supplemented with 50 mg/mL of UtraPure BSA

(ThermoFisher, AM2618) to yield effective final concentrations of �5 mM, �2.5 mM, �600nM, �300 nM, �160nM, �90 nM. For DNA

sequences containing mutations in the core binding site, we modified this concentration series to include slightly higher maximum

DNA concentrations (� 7.5 mM,� 4 mM,� 2 mM,� 400 nM,� 200 nM,�40 nM).We noted that addition of UltraPure BSA did not result

in changes in affinity. We then calibrated fluorescence intensity to effective DNA concentration by using a DeNovix instrument to

measure the absorbance at 260 nm.

Microscopy Instrumentation
Weperformed all measurements on aNikon Ti-SMicroscopewith amotorized XY stage (Applied Scientific Instrumentation,MS-2000

XYZ stage), cMOS camera (Oxford Instruments, Andor Zyla 4.2 CMOS), and solid-state light source (Lumencor, Sola SE Light En-

gine). We programmed the microscope to perform a gridded acquisition of the device using MicroManager (Edelstein et al.,

2014). This grid was set using a 10% overlap between imaging fields for image stitching (described in Analysis), and all images

were collected using a 4X objective lens using a 2x2 bin setting.

On-Chip Surface Patterning:
Device Connections for Reagent Introduction

To introduce reagents onto the microfluidic device, reagents were loaded via syringe suction into Tygon tubing (Saint-Gobain,

AAD04103) connected to a syringe at one end using a 23-gauge luer connector (McMaster-Carr, 75165A684) and fitted with a

blunt-ended steel pin at the other (0.013 in ID x 0.025 in OD x 0.5 in length, New England Small Tube Corporation, NE-1310-02). After

loading reagents into the syringe, we inserted the blunt-ended steel pin into the appropriate device port, removed the other end of the

Tygon from the Luer-fitted syringe (Brower et al., 2018), and connected the tubing directly to a custom pneumaticmanifold that drives

fluid flow via positive pressure (Brower et al., 2018). All pneumatic control valveswere actuated using a custom automated pneumatic

control manifold (Brower et al., 2018) controlled using an in-house python software package (https://github.com/FordyceLab/

RunPack).
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Surface Patterning
Device surfaces were functionalized with surface-immobilized antibody largely as previously described (Aditham et al., 2018; Le

et al., 2018); however, we included a few modifications. First, valve lines controlling the ‘‘button’’, ‘‘sandwich’’, and ‘‘neck’’ valves

(Figure S1) were pressurized with 550mM NaCl in Milli-Q H2O to prevent premature solubilization of the DNA spots by osmotic

balancing of fluids between the pneumatic control and reagent flow channels. All other control lines were pressurized with Milli-Q

H2O. Second, we controlled all pneumatic valves on the device at a pressure ranging from 35-37 psi and introduced reagents at pres-

sures of 3.5-4 psi.

To begin antibody patterning, we first dead-end filled all device control lines. Next, we flowed biotinylated BSA (2 mg/mL, Thermo-

Fisher Pierce, 29130) to expel all air from device flow layers by opening the inlet and outlet valves; to expel any remaining air bubbles

from the flow channels, we closed the outlet valve after 2-3minutes and continued to apply pressure to dead-end fill the device for an

additional 5-10 minutes. After all air bubbles were expelled, we opened the outlet valve to allow reagent flow, and introduced 2 mg/

mL biotinylated BSA for an additional 5minutes with the ‘‘button’’ valves pressurized and then for 30minutes with the ‘‘button’’ valves

open. Next, we flushed the device with phosphate buffered saline (10X stock, Corning, 46-013-CM; diluted to 1X in Milli-Q H2O) for

10 minutes. We then introduced neutravidin (1 mg/mL, Thermo Scientific, 31000) for 30 minutes with ‘‘button’’ valves opened, fol-

lowed by another PBS wash for 10 minutes. To passivate all device surfaces except those protected by the ‘‘button’’ valves, we

the pressurized the ‘‘button’’ valves and introduced biotinylated BSA again for 30 minutes, thereby coating device surfaces and pre-

venting non-specific antibody binding. After an additional 10 minute PBS wash, we introduced biotinylated anti-GFP antibody (100

ug/mL, Abcam, ab6658) into the device for 2minutes with the ‘‘button’’ valves pressurized (to ensure antibody was evenly distributed

throughout the device) and then opened ‘‘button’’ valves and flowed for an additional 13minutes and 20 seconds, thereby specifically

recruiting biotinylated anti-GFP antibodies to exposed neutravidin-coated surfaces beneath ‘‘button’’ valves (Figure 2). Finally, we

washed the device with PBS for 10 minutes. Upon conclusion of these steps, we stored the device with the "button’’ valves pressur-

ized, the outlet valve shut and the PBS inlet valve open. A light PBS flow kept the device from drying out; we typically completed

surface chemistry the night before an experimental assay.

On-chip TF Expression and Purification
On-chip TF Expression

After surface patterning, we expressed all TF variants on the device using the PURExpress in vitro transcription/translation system

(New England Biolabs, E6800L). First, we combined PURExpress components A (10 mL) & B (7.5 mL) off-chip, mixed gently per the

manufacturer’s instructions via pipetting, and stored the reaction on ice for 45 minutes, which we observed increased expression

yields. After this, we added 1.5 mL of RNAsin (Promega, N2515) and Milli-Q water or DNAse-free water (Promega) to 25 mL. A single

25 mL PURExpress reaction was sufficient for expression on a single device; for multiple devices, we scaled this reaction master mix

as necessary.

After incubation, we flowed PURExpress through flow channels for 10minutes with the ‘‘neck’’ and ‘‘button’’ valves closed and the

‘‘sandwich’’ valve open to completely fill all channels. After this period, we closed the outlet valve, opened the ‘‘neck’’ valves, and

closed the ‘‘sandwich’’ and ‘‘button’’ valves to push PURExpress into the plasmid compartments. To ensure that each plasmid

compartment was fully filled with PURExpress, we again opened the ‘‘button’’ and ‘‘sandwich’’ valves with the outlet valve closed

and continued flowing PURExpress for an additional 2-3 minutes. To begin protein expression, we then opened the ‘‘neck’’ valves

(to allow protein expression in the entire chamber), closed the ‘‘sandwich’’ valves and ‘‘button’’ valves (thereby isolating adjacent

chambers from one another and protecting the antibody-coated surface), and placed the device on a preheated hot plate (Torrey

Pines Scientific) at 37�C for 45 minutes. To allow GFP to fold and mature, we then removed the device from the hot plate and incu-

bated at room temperature for an additional 2 hours. Finally, we opened the ‘‘button’’ valves to allow expressed GFP-tagged TFs to

bind patterned anti-GFP antibodies on the slide surface beneath the ‘‘button’’ valves. During this step, we mounted the device on a

Nikon Ti-S microscope (described above) and periodically imaged using gridded acquisition imaging software to monitor build-up of

GFP intensity over time.

On-chip TF Purification

After allowing TF binding to proceed for 2 hours, we again closed the ‘‘neck’’ valve (to sequester the plasmid compartment from the

reaction compartment), closed the ‘‘button’’ valve (to protect surface-immobilized TFs from flow-induced shear, opened the ‘‘sand-

wich’’ valves, andwashedwith PBS for 10minutes to wash away any non-specifically bound TF proteins, thereby purifying TFswithin

each chamber. To remove TF proteins non-specifically adsorbed to device walls, we additionally washed with TrypLE (1X stock,

ThermoFisher, 12604-013) for 15 minutes, washed with 2 mg/mL biotinylated BSA for 15 minutes to re-passify device walls, and

finally washed with PBS for 10 minutes. After this step, we removed all reagent lines except for PBS and washed the inlet manifold

with PBS for 10 minutes to remove trace amounts of trypsin that could otherwise damage proteins during the assay.

DNA Binding Measurements
After on-chip recombinant protein expression and purification, we prepared the device for DNA incubation. All measurements were

performed at temperatures between 21 and 24�C (ambient room temperature). Briefly, we replaced the fluidics line containing PBS

with a new line containing assay buffer and again washed the inlet manifold of the device for 10minutes. To equilibrate expressed TFs

with assay buffer, we flowed assay buffer across the device for 5 minutes with the ‘‘button’’ valves closed, then opened the ‘‘button’’

valves and flowed for an additional 2 minutes; this process was repeated twice. We followed this with another 50-minute buffer equil-
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ibration period, in which ‘‘button’’ valves were open, exposing TFs to assay buffer. During this preliminary equilibration step, we con-

nected Tygon tubing containing each labeled dsDNA concentration to be assayed into the device, allowing all subsequent experi-

mental steps to be automated using custom in-house software (https://github.com/FordyceLab/RunPack-STAMMP).

For each concentration of DNA (from the lowest to the highest), we: (1) closed ‘‘neck’’ and ‘‘button’’ valves and opened ‘‘sandwich’’

and inlet and outlet valves; (2) flowed labeled DNA across the device for 10minutes; (3) closed ‘‘sandwich’’, inlet, and outlet valves; (4)

opened ‘‘button’’ valves (to allow surface-immobilized TFs to interact with soluble DNA); (5) incubated for 50 minutes (to allow reac-

tions to come to equilibrium); (6) imaged all chambers within the device in the Cy5 (DNA) channel (to quantify intensities and calculate

the concentration of soluble DNA available for binding in each chamber); (7) closed ‘‘button’’ valves (to trap TF-bound DNA); (8)

washed with assay buffer for 10 minutes; and (9) imaged all chambers in both the GFP (TF) and Cy5 (DNA) channels to quantify

the relative intensities of trapped species in each chamber. To quantify free DNA in solution at each step, we imaged the device

in the Cy5 channel at exposures ranging from 30 ms to 150 ms to ensure an adequate dynamic range for downstream analysis.

To quantify surface-immobilized TF intensities and intensities of bound DNA, we acquired 500 ms exposure images in the GFP chan-

nel and 3000ms exposure images in the Cy5 channel. To image the entire device, we tiled acquisitions across the device (typically 7 x

7 gridded images).

QUANTIFICATION AND STATISTICAL ANALYSIS

We performed all analysis in Python, with exceptions as noted below.

Image Processing and Quantitation
To correct for position-dependent variation in excitation illumination and collection efficiency, we applied a flatfield correction to all

GFP and Cy5 fluorescence images using correction images as previously described (Thorn, 2014). We also collected initial images of

devices prior to the start of each experiment for every channel and exposure time to collect background measurements to calculate

optimal flatfield correction parameters. Tiled acquisition images were then stitched to generate a single large image of each device

using an in-house image stitching program (https://github.com/FordyceLab/ImageStitcher).

Each DNA concentration measurement yielded 3 stitched images: (1) a ‘‘Prewash Cy5’’ image in the Cy5 channel used to calculate

the concentration of free DNA available for binding; (2) a ‘‘Postwash GFP’’ images used to quantify the amount of surface-immobi-

lized TFs at each step of the binding assay; and (3) a ‘‘Postwash Cy5’’ image used to quantify the amount of fluorescently-labeled

DNA bound to surface-immobilized TFs at each step.

To quantify Alexa-647-labeled DNA intensities within each chamber (for the ‘‘Prewash Cy5’’ image) and labeled DNA and TF in-

tensities beneath the ‘‘button’’ valve (for the ‘‘Postwash GFP’’ and ‘‘Postwash Cy5’’ images), we used a custom, in-house python

image processing package (https://github.com/FordyceLab/ProcessingPack-STAMMP). Briefly, we first identified the four corners

of the device bymarking the centers of the top left, top right, bottom left, and bottom right corner binding reaction chambers using the

‘‘Prewash Cy5’’ image associated with a high introduced DNA concentration. The other chamber coordinates were initially approx-

imated by using these corners as vertices of a 28-column x 56-row grid (chamber dimensions of the PC1k device); we then employed

a Hough Transform to find chamber centers. We then used these same coordinates to quantify median fluorescence chamber

intensities for all chambers across all 6 measured DNA concentrations. Finally, median chamber intensities were converted to

DNA chamber concentrations using per-chamber DNA calibration curves (as described below).

To quantify fluorescence intensities associated with surface-immobilized TFs and trapped bound DNA, we first identified ‘‘button’’

centroid locations and perimeters using the first ‘‘Postwash GFP’’ image as a reference. ‘‘Button’’ centroid positions were approx-

imated using a grid search to maximize the fluorescence intensity within a circular area slightly larger than the expected physical size

of the buttons. We then applied these same feature locations to all ‘‘Postwash GFP’’ and ‘‘Postwash Cy5’’ images, indexed by the

DNA concentration step at which they were acquired. To quantify ‘‘button’’-associated GFP and Alexa-647 intensities within each

chamber, we summed the total fluorescence spot intensity in each channel and then subtracted contributions from local background

(calculated by summing the intensities of an annulus surrounding the spot area and then normalizing this value by the relative ratio of

the ‘‘button’’ and annulus areas). Finally, we associated all chamber and ‘‘button’’ intensities with a particular mutant using a custom

Python script that maps plate well location (and associated mutant ID) to reaction chambers within the device.

Quality Control and Binding Curve Generation
Prior to generating binding curves, we employed several quality control checks to the raw imaging data: (1) we computed a linear

regression between observed intensities for each chamber in the ‘‘Prewash Cy5’’ image and the concentration of introduced

DNA, inspected r2 values associated with each fit (Figure S2); (2) we compared the distributions of GFP intensities between

plasmid-containing chambers and empty chambers and eliminated chambers with intensities below an experiment-specific

threshold (1.5x106 - 2.5x106 RFU); (3) we eliminated any chambers with measured ‘‘Postwash Cy5’’ median intensities below back-

ground levels; and (4) wemanually examined raw images to eliminate chambers containing any unusual particulates or debris leading

to aberrant DNA binding curves.

To generate per-chamber binding curves, we then plotted the measured ratio of intensities beneath the ‘‘button’’ valve (Alexa-647-

DNA/TF-GFP from ‘‘Postwash Cy5’’ and ‘‘Postwash GFP’’ images) against the DNA concentration at each assay step.
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Calculating Kd values

To determine the measured Kd values for each chamber, we globally fit the measured ratio of fluorescence intensities (DNA intensity/

transcription factor intensity) for each chamber to a single-site binding model (Maerkl and Quake, 2007; Fordyce et al., 2010):

Rið½DNAi�Þ = Rmax,½DNAi�
Kd;i + ½DNAi�

Here, Ri([DNA i]) denotes the measured intensity ratio as a function of soluble DNA concentration within a given chamber, Rmax is a

global constant shared across all chambers corresponding to the maximum ratio of intensities at saturating [DNA], [DNA i] denotes

the concentration of soluble DNA within a given chamber, and Kd,i denotes the dissociation constant (Kd) for a given chamber. This

global fitting procedure relies on the following 4 assumptions:

(1) The fluorescence intensities of the DNA (labeled with AlexaFluor-647) and TFs (labeled with eGFP) are linearly related to the

number of molecules bound to the device surface or in solution. With this assumption, the measured ratio of DNA/TF inten-

sities within a given chamber (i.e. the ratio of AlexaFluor-647/GFP intensities) is linearly related to the fractional occupancy

(number of DNA molecules bound by surface-immobilized TFs). The validity of this assumption is supported by the fact

that observed DNA calibration curves are highly linear (Figure S2).

(2) The maximum concentration of TF deposited in each chamber is well below measured Kd values, ensuring that there is no

significant depletion of DNA ligand even at the lowest DNA concentrations used in the assay and that we can approximate

the unbound fraction using the observed chamber intensity prior to binding. We have previously measured the maximum con-

centration of TF depositedwithin each chamber to be 30nM (Le et al., 2018), well below theKd values for themost tightly bound

sequences in the assay. Moreover, we find that measured Kd values between experiments are unchanged by 2-fold differ-

ences in the amount of immobilized TF-eGFP, as expected for immobilized TF concentrations well below measured Kds (Fig-

ure S16).

(3) The reaction has come to equilibrium prior to making the measurement. In our assays, we incubated TFs with each concen-

tration of DNA for 50 minutes, consistent with prior work (Maerkl and Quake, 2007; Fordyce et al., 2010; Le et al., 2018). As

described in Jarmoskaite et al. 2020, the rate equation for the approach to equilibrium for a two-component binding system

under conditions where one binding partner (here, the DNA) is in excess is given by:
kequil = kon½DNA� + koff

Here, kequil represents the rate constant for the approach to equilibrium, kon is the association rate constant, [DNA] is the soluble

DNA concentration, and koff is the dissociation rate constant (Jarmoskaite et al., 2020). This rate constant is the slowest under the

limiting conditions in which the [DNA] concentration approaches zero, yielding:

kequil � koff

To estimate the half-life of the time to reach equilibrium for Pho4 binding interactions, we can substitute measured values from

previous experiments measuring TF dissociation rates for wildtype Tye7 (another bHLH TF from yeast) of �8x10-3 s-1 (Geertz

et al., 2012):

t1=2 =
lnð2Þ
kequil

� lnð2Þ
koff

This calculation yields an estimated t1/2 of 87 seconds for high-affinity consensus motifs; for weaker interactions, we note that koff
increases, reducing the time to equilibrium. In the STAMMP experiments, we equilibrated all measurements for 50 minutes, equiv-

alent to over 30 estimated half-lives and well in excess of the 5 half-lives required to reach 96.6% completion.

(4) Mutations to Pho4 do not significantly affect the stoichiometry of the binding interaction.With this assumption, all chambers can

be fit with a single chamber-specific affinity parameter (Kd,i) and a single sharedRmax value, therebymaking it possible to extract

Kd values even for oligonucleotides with Kds well above the highest measured concentration whose curves do not plateau. This

assumption is supported by the observation that local fits to all chambers that reach saturation (in which we do not constrain the

Rmax parameter to be the same across chambers) return best fit Rmax values that vary by only �33% from the median Rmax for

nearly all mutants (Figure S5) (with the exception of A289K and A289R, which we excluded from downstream analyses of DNA

sequences with only flanking nucleotide mutations as they could not be appropriately fitted using the global fit).

To enhance the accuracy of estimated Kd values even for oligonucleotides with binding affinities above the highest measured DNA

concentration, we initially determined a global Rmax value for all mutants by calculating the median Alexa-647-DNA/TF-GFP ratio for

the top 10% of DNA/protein measurements at the final DNA concentration within the assay. We then fit all curves using this constant

Rmax across all chamberswithin a given experiment, optimizing only the per-chamberKd value via nonlinear least squares fitting. Over

several experiments for experiments containing only flanking nucleotide mutations (where many mutants reached saturation at the

maximum [DNA]), this Rmax value was largely consistent (0.67 ± 0.012, median ± SEM) (Figure S12). For experiments assessing bind-
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ing to oligonucleotides containing mutations in the core consensus site, this median Rmax value was typically lower, and so all curves

were fitted using Rmax values of 0.66 or 0.68. In one experiment, we calibrated the Rmax value by measuring binding to the reference

DNA sequence 5’-C CACGTG A-3’ at a high concentration and used the median of the top 10%. All binding curves and all returned

Kds for all chambers across all experiments are available as Supplemental Files.

To calculate DDGs across a given experiment, we used the following formula:

DDG = RT,ln

�
Kd

Kd;ref

�
(Equation 2)

where R is the gas constant (1.987 ∙ 10-3 kcal/(K ∙mol)), T is 298 K, and Kd, ref is the median Kd measurement for the wildtype PHO4

protein interacting with the DNA oligonucleotide sequence used in a given experiment.

In Equation 2,Kd, ref was calculated by taking themedian affinity of all wildtype Pho4measurements for a particular oligonucleotide

sequence. For the above calculation, the median number of wildtype Pho4 replicates was 12 measurements per experiment (range:

2-16 replicates per experiment).

Determining Statistical Significance from Wildtype Pho4 & from Background
To identify mutants with statistically significant differences in DNA binding from the WT protein, we compared the distribution of all

measured DDG values for every mutant against the distribution of all measured DDG values for the WT Pho4 protein using an inde-

pendent, two-tailed T-test (assuming unpooled variance). We used a Bonferroni corrected p-value assuming a normal p-value of 0.05

and 213 measured mutants (p < 0.0003) as a threshold of significance.

To identify mutants with binding that was statistically significantly different from background (nonspecific) DNA binding on the

assay, we compared the distribution of all measuredDDG values for everymutant against the distribution of all measuredDDG values

for an A299D mutant that lacks DNA binding and again used a Bonferroni correction to determine a conservative threshold for sig-

nificance. To select A299D as an appropriate mutant to use, we compared the Cy5 signal intensities for empty chambers (without

expressed TFs) with those of several TF variants at the highest DNA concentration assayed for two sample experiments. Measured

fluorescence intensities for two null-binding mutants, H257P and A299D, were consistently similar to those of the empty chambers

(Figure S7). As A299 is not involved in DNA binding or close to DNA binding residues, we selected A299D for comparison.

Predicting Likely Effects from Phylogeny
Analysis of Pho4 Variants via PROVEAN

To attempt to predict whether certain Pho4 mutants would be ‘damaging’ for function, we used the PROVEAN (PROtein Variation

Effect Analyzer) software tool (Choi, et. al., 2012, 2015) as provided using default cutoff score of -2.5.

To generate a receiver operating characteristic (ROC) curve, we compared the PROVEAN scores to the DDG values for the refer-

ence DNA sequence 5’-CCACGTGA-3’. We considered mutants that were between -0.5 kcal/mol and 1 kcal/mol (inclusive) as indis-

tinguishable from wildtype (ie. a benign variant). For ROC analysis, we varied the prediction cutoff score -10 to 3 in increments of 0.5

and calculated four quantities at each cutoff:

(1) true-neutral (TN): statistically indistinguishable binding from wildtype and predicted benign;

(2) false-neutral (FN): statistically significantly different binding from wildtype Pho4 and predicted neutral;

(3) true-deleterious (TD): distinguishable from wildtype Pho4 and predicted deleterious; and

(4) false-deleterious (FD): indistinguishable from wildtype and predicted deleterious.

At each threshold, we calculated true positive rate (TP) and false positive rate (FP) using the following formulae: TP = TN/(TP+FD)

and FP = FN/(FN+TD). We then calculated the area under the curve (AUC) for the ROC using the trapz function in Python (NumPy). As

a negative control, we also calculated ROC and AUC values for 25 trials in which DDG values were scrambled.

Entropy Calculations

We calculated entropy at every Pho4 position using a publicly available deposited sequence alignment for bHLH proteins (bHLH

Family identifier: PF00010) We then trimmed columns in the multiple sequence alignment to include non-gapped positions in the

Pho4 reference sequence. Entropy was calculated using the information_content method within the Biopython package with the ex-

pected frequency of each residue at every position within Pho4 at the default setting for the Biopython information_content method

(Cock et al., 2009).

Identifying ‘Affinity’ and ‘Specificity’ Mutants
Affinity vs. Specificity Analysis

To test if mutations globally enhanced affinity or altered specificity, we considered all data from oligonucleotides containing ‘flanking’

nucleotide mutations (5’-CCACGTGA-3’, 5’-GCACGTGC-3’, 5’-ACACGTGA-3’, and 5’-TCACGTGC-3’) and ‘core’ nucleotide muta-

tions (5’-CCACGTGA-3’, 5’-CAACGTGA-3’, 5’-CCGCGTGA-3’, 5’-CCATGTGA-3’, 5’-CCACGCGA-3’, and 5’-CCACGTTA-3’).

Because their affinities were increased beyond assay resolution, we excluded A289K and A289R from analysis for all ‘flanking’ nucle-

otide mutations. For the DNA sequence 5’-TCACGTGC-3’, we also noted that H255R raised affinity beyond assay resolution and, for

this DNA sequence, also excluded this mutant. For each mutant and for each oligonucleotide sequence, we then calculated the
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normalized change in affinity for that mutant relative to all Pho4 constructs (Kd,mutant/Kd,median for all mutants). For each mutant, we then

calculated the median and standard deviation values of this metric to identify constructs that consistently increased or decreased

affinity to all oligonucleotides (‘affinity mutants’) or had a particularly large variance in values (‘specificity mutants’).

If we calculate a normalized affinity where we divide the measured Kd for a particular TF/oligonucleotide pair by the median

measured Kd for all Pho4 variants interacting with that oligonucleotide, then we would recover a ‘normalized affinity’ of 1 for a TF

mutation that did not affect binding to that oligonucleotide, >1 for a TF mutation that decreased binding (increased the Kd), and

<1 for a TF mutation that increased binding (decreased the Kd). For a mutation with equally reduced binding across all oligonucle-

otides, we would therefore expect to see a reduced median normalized affinity without any increased variance in these values.

For a mutation with preferential effects on binding to a limited number of oligonucleotides (ie. changes in specificity), however, we

would expect to see an increased variance as changes in binding affinity are now unequal across all DNA sequences studied.

Affinity-Enhancing Mutants

We then identified ‘affinity-enhancing’ mutants using a T-test against WT Pho4 using a Bonferroni-corrected p-value as the signifi-

cance threshold and considering pools of ‘flanking’ and ‘core’ mutant oligonucleotides separately (Figure S19). To arrive at a final list,

we further required that mutants enhance affinity by at least 0.3 kcal/mol (i.e. >2 standard deviations for WT Pho4 DDG measure-

ments for oligonucleotides containing ‘flanking’ mutations (median DDG � 0 kcal/mol; standard deviation: 0.13 kcal/mol)) for either

‘flanking’ or ‘core’ mutations. This allowed, for example, consideration of mutants for which binding affinity was increased beyond

reliable measurement for flanking nucleotide mutations (eg. A289R, A289K) but was measurable for core site mutations. We then

categorized residues based on whether they were within or outside the DNA binding domain, resulted in altered charge of the TF,

was at a solvent-facing residue, or was another type of mutation.

Identifying Mutants with ‘Altered’ Yet Detectable DNA Binding

To identify mutations that altered DNA binding relative toWT, we again aggregated affinity measurements for all oligonucleotides and

grouped measurements by protein mutant. For each mutant and for each oligonucleotide sequence, we then calculated the change

in binding affinity relative to the affinity of the WT Pho4 construct for that oligonucleotide sequence:

DDGmutant; oligonucleotide = RT,ln

�
Kd

Kd;ref

�

We then performed a T-test comparing the distribution of DDG values for each mutant relative to the distribution of DDG values for

the WT Pho4 construct. Using a Bonferroni-corrected p-value threshold (p < 0.05/215 mutants), we identified 163/215 mutants with

statistically significantly different binding from the WT Pho4 for at least 1 oligonucleotide. Next, we tested whether binding was sta-

tistically significantly different from background binding by comparing the distribution of DDG values for each mutant with that of the

DNA binding-deficient A299D mutant. Using the same p-value threshold, we identified 184/215 mutants that retained detectable

binding across at least one oligonucleotide. Finally, we considered the union of these 2 sets (133mutants) to generate a list ofmutants

that statistically significantly altered but did not ablate DNA binding.

Identifying Combinations of Residue and Nucleotide Mutations that Preserved Physiological Binding

To identify particular residue/nucleotide mutations that altered but preserved physiologically-relevant levels of binding, we: (1)

considered the aggregate dataset of 1849 Kd measurements for all mutants and oligonucleotides, (2) identified mutants with binding

that was statistically significantly different from WT but still detectable (as above), (3) filtered out any measurements with Kd values

higher than the median Kd measured for WT Pho4 interacting with the known physiologically relevant low affinity 5’-C CACGTT A-3’

site (e.g. mutant/nucleotide combinations with weaker binding) (Kd = 12 ± 0.2 mM), and (4) filtered out TF mutations at known DNA

nucleotide-contacting residues (i.e. Pho4 positions 252, 255, 259, and 263). Finally, we quantified the fraction of combinations of

these TF and DNA mutations that altered yet preserved binding that involved a ‘flanking’ nucleotide mutation. Through this analysis,

we found: (1) 1063/1849 combinations of TF andDNAmutations yielded altered binding affinities that were tighter than that measured

for WT Pho4 interacting with the 5’-C CACGTT A-3’ sequence, (2) that 648/1849 of these combinations were also statistically signif-

icantly different from WT, and (3) that 435/648 of these combinations involved ‘flanking’ nucleotide substitutions (67%).

Helical Propensity Analysis
Predicted energetic changes resulting from mutation-dependent alterations in helical propensity were taken from prior measure-

ments (O’Neil, KT, DeGrado, WF. Science, 1990., Table 1 of publication). To determine the degree to which changes in measured

DNA binding affinity could be explained by predicted changes in helical propensity, we plotted measured differences in DBA binding

affinity (DDG for Pho4mutant variants relative toWT Pho4 for the consensus DNA sequence) vs. predicted DDG values from changes

in helical propensity for the substituted vs. the native residue at each position and performed a linear regression. We performed this

comparison for solvent-exposed mutations within helix 1 (where we expect changes in helical propensity to dominate observed en-

ergetic effects) (Figure 6C), at nucleotide-contacting residues (where we expect changes in helical propensity to have an effect but

that overall energetic changes are dominated by altered hydrogen bonding) (Figure S20A), and within the loop region (where expect

changes in helical propensity to have no correlation with changes in measured binding) (Figure S20B). For mutations within the loop

region, we excluded backbone-contacting residues and two proline residues likely to have additional effects on binding affinity.
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Double-Mutant Cycle Analysis
Comparing Differential Effects of TF Mutations

Identifying epistasis across the TF-DNA interface requires 4 affinity measurements: (1) WT Pho4 binding a ‘reference’ DNA sequence,

(2) mutant Pho4 binding a ‘reference’ DNA sequence, (3) WT Pho4 binding a ‘mutant DNA sequence, and (4) mutant Pho4 binding a

‘mutant’ DNA sequence. Prior to double-mutant cycle analysis, we: (1) eliminated any TF-DNA combinations with < 4 replicate mea-

surements, (2) excludedmeasurements to TFmutants due to poor fitting quality for the reference DNA sequence (described above in

‘‘Affinity vs. specificity analysis’’), and (3) log10-transformed all data.

For each mutant cycle, we then: (1) identified TF/DNA mutant combinations with ‘detectable’ binding (assessed using a T-test

comparingmeasured affinities with those obtained for the binding-deficient A299Dmutant interactingwith the same oligonucleotide),

(2) eliminated TF mutants lacking detectable binding for both oligonucleotides (retaining TF mutants with detectable binding for at

least one oligonucleotide), (3) plotted measured log-transformed affinities for each mutant (median ± SEM) for the ‘mutant’ DNA

sequence vs. the ‘reference’ DNA sequence (Figure S22), (4) calculated a linear regression of these pairwise comparison values,

(4) calculated residuals for each mutant relative to this linear regression, (5) computed the Z-score of the residual (ie. standardized

residual) for each mutant relative to all mutants (Zi = ri /SD, where ri is the residual for mutant i, and SD is the standard deviation of the

total distribution of residuals), and (6) identified all mutants with |Zi| R 2 for further investigation.

To visualize the concentration-dependent binding behavior that would have been expected if the energetic effects of TF and oligo-

nucleotidemutationswere purely additive, we first calculated an expected ‘additive’Kd value using themedian referenceKd value (for

WT Pho4 interacting with the ‘reference’ oligonucleotide), the median Kd resulting from the relevant oligonucleotide mutation alone,

and the median Kd resulting from the TF mutation alone as follows:

KTFmut ;DNAmut

d =
KTFmut ;DNAWT

d ,KTFWT ;DNAmut

d

KTFWT ;DNAWT
d

For each measured concentration, we then plotted the binding curve corresponding to this ‘additive’ Kd using the single-site bind-

ing model equation (Equation 1).

To determinewhether the candidate TFmutant appeared epistatic with theDNA nucleotidemutation, we usedmeasurements of (1)

WT Pho4 and WT DNA, (2) WT Pho4 and mutant DNA, and (3) mutant Pho4 and WT DNA to generate a distribution of additive Kd

measurements (n=100 simulated additive measurements). We then performed a Student’s T-test comparing the distribution of ‘ad-

ditive’ affinities with the experimentally measured affinities for the double-mutant and used a p-value cut-off of 0.05 to define TF mu-

tants that are epistatic with DNA mutants.
e11 Cell Systems 12, 112–127.e1–e11, February 17, 2021
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Figure S1 (Related to Figure 1). Architecture of MITOMI microfluidic device. Detailed diagram of MITOMI 
microfluidic device with valve inlets and outlets annotated showing reagent flow channels (blue) and 
pneumatic valve channels (orange) that control flow of reagents in device. 
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Figure S2 (Related to Figure 1). Calibration curves relating fluorescence intensity and DNA 
concentration. (A) Chamber calibration curves for representative sample chambers containing 2 Pho4 
constructs (WT and H257P) across 3 experiments showing individual points (colored by device chamber) 
and associated linear fits (black dashed lines). (B) Heatmaps showing linear fit slope as a function of 
chamber position within device. Slopes vary by approximately 2-fold across the device, with lowest slopes 
corresponding to outer edges of the microscope field-of-view. (C) Goodness-of-fit distributions for 
calibration curves. 
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Figure S3 (Related to Figure 3). Amino acid residue and DNA contact map of Pho4 (adapted from 
Shimizu, et al., 1997 and PDBsum NUCPLOT (Luscombe, et al., 1997)). 
 
 

 
 
Figure S4 (Related to Figure 4). Pairwise comparison of per-mutant Kds (top row) and ΔΔGs (bottom 
row) for all TF mutants across 3 experiments for reference DNA sequence 5’-C CACGTG A-3’. Points 
indicate median affinities (± SEM) for each TF mutant. ΔΔGs reflect relative differences in binding energy 
relative to wildtype and vary by <0.4kcal/mol across experiments. Linear fits are indicated by black dashed 
lines; identity lines are indicated by red dashed lines.  
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Figure S5 (Related to Figure 4, Methods) Mutations to Pho4 do not perturb binding stoichiometry of 
Pho4-DNA interactions. (A) Per-chamber binding curves for Pho4 mutants with saturating Rmax allowed to 
vary for Pho4 mutants that show binding saturation in DNA binding assay. (B) Distribution of Rmax values 
returned for oll oligonucleotide/TF measurements showing binding saturation.  
 
 

 
 
 
Figure S6 (Related to Figure 4). Determining dynamic range of assay measurements for reference 
sequence 5’- C CACGTG A -3’.  (A) Comparison of the distribution of measured ΔΔGs (± SEM) for a given 
mutant vs. the distribution of ΔΔGs for WT Pho4 to determine statistically significant differences in binding 
(using a two-tailed t-test with a Bonferroni correction). Dashed line indicates estimated threshold for 
significance (p = 0.00023). (B) Comparison of the distribution of measured ΔΔGs (± SEM) for a given 
mutant vs. the distribution of ΔΔGs for an inactive Pho4 mutant (A299D) to determine mutants resolvable 
from background noise. Dashed line indicates estimated threshold for significance (p = 0.00023). 
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Figure S7 (Related to Figure 4 and Methods). Determining mutants at lower limit of assay detection. (A) 
Images showing measured DNA intensities for two Pho4 variants (H257P and A299D) and empty 
chambers (boxed in red) to determine effective lower limit of detection for binding to the 5’- C CACGTG A 
-3’ reference sequence. Images are contrast-treated for visibility. (B) Distribution of raw Cy5 intensities at 
the highest DNA concentration for 2 binding deficient mutants (H257P and A299D) across 2 representative 
devices. 
 
 

 
 
 
Figure S8 (Related to Figure 4). Measured effect of mutations on DNA affinity as a function of distance 
from DNA. (A) Distance (angstroms) of alpha carbon for each Pho4 residue from DNA, with DNA contacting 
residues annotated. (B) Measured relative change in binding energy (ΔΔG) as a function of distance from 
DNA for all Pho4 mutants; loop residues are shown in green. 
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Figure S9 (Related to Figure 4). Comparing observed effects of mutations with those predicted by 
phylogeny. (A) Entropy at a given residue position calculated based on PFAM alignment vs. measured 
mutational effects on affinity (median ΔΔG ± SEM). Dashed line indicates a linear fit between data points 
(r2=0.41; y = 0.8x + 1.06). (B) Calculated PROVEAN score vs. measured mutational effect on affinity 
(median ΔΔG ± SEM). Horizontal dashed line indicates binding affinity of wildtype Pho4; diagonal dashed 
line indicates a linear regression of the data (r2=0.35; y = -1.65x - 1.8). (C) Comparison of PROVEAN score 
vs. measured mutational effect on affinity (median ΔΔG ± SEM) for ROC analysis. Gray regions indicate 
threshold areas considered ‘damaging’ (ΔΔG < -0.5 kcal/mol or ΔΔG > 1 kcal/mol). Horizontal dashed line 
indicates standard damage threshold for PROVEAN. (D) ROC curve generated by adjusting damage 
threshold and calculating false positive and false negative rates. Blue curve indicates experimental ROC 
(AUC = 0.7). Gray curves indicate 25 separate trials of scrambled ΔΔG (AUC range = 0.43-0.55). Red 
dash line indicates AUC = 0.5 (random guess). 
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Figure S10 (Related to Figure 4). Predicted disorder of amino acids immediately preceding DNA 
binding domain of Pho4 (Mészáros, et al., 2018; Erdős and Dosztányi, 2020). 
 
 
 

 
 
Figure S11 (Related to Figure 4). Differential effects of alanine and valine substitutions. (A) Measured 
ΔΔG values for valine vs. alanine substitutions at the same residue position; dashed lines indicate ±1 
standard deviation of all wildtype Pho4 ΔΔG measurements. (B) Positions at which either alanine or 
valine are disfavored projected onto Pho4 crystal structure and alanine disfavored residues shown on 
transparent structure for clarity (inset). 
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Figure S12 (Related to Figure 5 and supplemental methods).  Measured TF GFP intensities for all 
experimental replicates for mutated DNA sequences in this study.  
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Figure S13 (Related to Figure 5 and supplemental methods).  Histograms of experimental replicates 
per Pho4 mutant for mutated DNA sequences in this study aggregated across 3 devices for 
oligonucleotides (or 2 devices for the C CGCGTG A oligonucleotide). For visibility, we do not include the 
number of wildtype Pho4 replicates (2-16 replicates per experiment with a median replicate number of 12). 
 
 

 
 
Figure S14 (Related to Figure 5 and supplemental methods). (A) Violin plots for the highest 10% of 
measured DNA/protein ratios at the highest measured DNA concentration for all experiments containing 
cognate E-box motif. (B) Distribution of number of chambers with a given DNA/TF ratio; median ratio = 
0.67 ± 0.012 (SEM). 
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Figure S15 (Related to Figure 5). Pairwise comparison of per-mutant Kds (top row) and ΔΔGs (bottom 
row) for all TF mutants for all replicates across all DNA sequences in this study. Points indicate median 
affinities (± SEM) for each TF mutant; all ΔΔGs are calculated relative to the WT Pho4 variant on a per-
experiment basis. Black and red dashed lines indicate linear fits and identity lines, respectively. 
 
 
 

 
 

Figure S16 (Related to Figure 5). Measured Kds do not depend on the surface-immobilized TF 
concentration. (A) Boxplots showing intensity of surface-immobilized eGFP-tagged Pho4 across all 
replicates for oligo sequence 5’-T CACGTG C-3’. (B) Pairwise comparison of per-mutant Kds (left) and 
ΔΔGs (right) for all TF mutants for replicates 1 and 3 for oligo sequence 5’-T CACGTG C-3’. Data points 
represent median +/- SEM of affinity measurements. (C) Fold Kd versus fold GFP between both replicates. 
Data represents ratio of median affinities; median Kd ratio = 1.006. (D) Boxplots showing intensity of 
trapped eGFP-tagged Pho4 across all replicates for oligo sequence 5’-C CATGTG A-3’. (E) Pairwise 
comparison of per-mutant Kds (left) and ΔΔGs (right) for all TF mutants for replicates 1 and 3 for oligo 
sequence 5’-C CATGTG A-3’. Data points represent median +/- SEM of affinity measurements. (F) Fold 
Kd versus fold GFP between both replicates. Data represents ratio of median affinities; median Kd ratio = 
0.96. 
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Figure S17 (Related to Figure 5). Comparison of the distribution of measured ΔΔGs (± SEM) for a given 
mutant vs. the distribution of ΔΔGs for WT Pho4 to determine statistically significant differences in binding 
(using a two-tailed t-test with a Bonferroni correction). Horizontal dashed line indicates p-value cutoff for 
statistical significance. Vertical dashed lines indicate minimum perturbations in ΔΔG measurements for 
which mutants showed statistical difference from wildtype Pho4. Red regions indicate False Negative (FN) 
mutants with ΔΔG perturbations surpassing minimum ΔΔG but not considered different from wildtype. All 
mutants which were statistically significant were considered True Positive (TP). False Negative Rate (FNR) 
= FN/(FN+TP). 
 



 16 

 
 

 
 
Figure S18 (Related to Figure 5). Concentration-dependent binding curves for mutations at the 
backbone-contacting residue A289 across all oligonucleotide sequences containing core mutations. 
A289R and A289K both increase binding affinities for all DNA sequences; Kd values represent the median 
of all curves ± SEM. 
 
 
 
 
 

0  1  2  3  4  5  6  7 0  1  2  3  4  5  6  7 0  1  2  3  4  5  6  7

0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8

0  1  2  3  4  5  6  7  8

0  1  2  3  4  5  6  7 0  1  2  3  4  5  6  7 0  1  2  3  4  5  6  7

0  1  2  3  4  5  6  7  8

0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8

0  1  2  3  4  5  6  7  8 0  1  2  3  4  5  6  7  8

A289R A289K WT
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

DN
A/

TF
DN

A/
TF

DN
A/

TF
DN

A/
TF

DN
A/

TF

[DNA] (μM) [DNA] (μM) [DNA] (μM)

KD = 0.8 +/- 0.03 uM KD = 2.9 +/- 0.2 uM KD = 9.7 +/- 0.2 uM

KD = 1.3 +/- 0.05 uM KD = 3.0 +/- 0.06 uM KD = 17 +/- 0.3 uM

KD = 0.98 +/- 0.04 uM KD = 3.1 +/- 0.16 uM KD = 10 +/- 0.18 uM

KD = 10 +/- 0.4 uMKD = 2.8 +/- 0.2 uMKD = 0.7 +/- 0.1 uM

KD = 0.9 +/- 0.02 uM KD = 3.3 +/- 0.2 uM KD = 12 +/- 0.2 uM

C AACGTG A C AACGTG A C AACGTG A

C CGCGTG AC CGCGTG AC CGCGTG A

C CATGTG AC CATGTG AC CATGTG A

C CACGCG AC CACGCG AC CACGCG A

C CACGTT AC CACGTT AC CACGTT A



 17 

 
 
 
Figure S19 (Related to Figure 5 and methods). Affinity-enhancing Pho4 mutations. (A) Calculated -
log10(p-values) (two-tailed T-test) vs. measured ΔΔG values (median ± SEM) for Pho4 variants interacting 
with DNA sequences containing mutations to flanking (left) or core (right) nucleotides; mutations with 
significantly enhanced binding are highlighted in green. (B) Location of affinity-enhancing mutations on 
Pho4 crystal structure and list of residues.  
 
 
 

 
 
 
Figure S20 (Related to Figure 6). Measured ΔΔGs for substitutions to nucleotide-contacting and loop 
residues do not correlate with predicted changes in helical propensity. (A) Measured ΔΔGs for mutations 
at nucleotide-contacting residues vs. predicted changes in helical propensity (r2 = 0.27; RMSE = 2.0 
kcal/mol); as expected, ΔΔG effects are dominated by changes to residue/DNA contacts. (B) Measured 
ΔΔGs for mutations in unstructured loop region vs. predicted changes in helical propensity (r2 = 0.0089; 
RMSE = 1.2 kcal/mol); as expected, ΔΔG effects in unstructured regions do not correlate with changes in 
helical propensity. 
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Figure S21 (Related to Figure 6). (A) Comparison of changes in helical propensity with change in binding 
energy relative to wildtype for mutants at positions within helical area of loop region (residues 282-285), 
and helix 2 (C300, R301). (B) Positions of mutated residues shown on Pho4 crystal structure (PDB: 1A0A), 
residues 282-285, 300, and 301 highlighted in teal. 
 
 



 19 

 
 
Figure S22 (Related to Figure 7). Analysis pipeline for identifying epistasis (non-additivity) between TF 
and DNA mutations. 
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Figure S23 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
C CACGTG A-3’ and 5’-C CACGTT A-3’ oligonucleotides. (A) Identification of mutants statistically 
resolvable from background for 5’-C CACGTT A-3’ binding measurements. (B) Pairwise comparisons of 
measured log10(Kd) values (median ± SEM) for Pho4 mutants for 5’-C CACGTG A-3’ and 5’-C CACGTT A-
3’ oligonucleotides with outliers labeled. Dashed line indicates linear fit to plotted data (r2 = 0.84). (C) 
Distribution of residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and 
candidate mutants listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves 
represent binding curve for an expected Kd for which TF and DNA mutations are purely additive. (E) 
Example additive mutants conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing 
experimental double-mutant measurement to distribution of predictive additive Kd measurements. 
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Figure S24 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
G CACGTG C-3’and 5’-T CACGTG C-3 oligonucleotides. (A) Identification of mutants with binding 
statistically resolvable from background for 5’-G CACGTG C-3’ and 5’-T CACGTG C-3’ sequences. (B) 
Pairwise comparisons of measured Kds (median ± SEM) for TF variants binding 5’-G CACGTG C-3’ and 
5’-T CACGTG C-3’ DNA sequences with outliers marked; dashed line indicates linear fit (r2 = 0.85). (C) 
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Distribution of residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and 
candidate mutants listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves 
represent binding curve for an expected Kd for which TF and DNA mutations are purely additive.  (E) 
Example additive mutants conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing 
experimental double-mutant measurement to distribution of predictive additive Kd measurements. 
 
 

 
 
 
Figure S25 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
G CACGTG C-3’and 5’-C AACGTG C-3 oligonucleotides. (A) Identification of mutants statistically 
resolvable from background for 5’-C AACGTG A-3’ binding measurements. (B) Pairwise comparisons of 
measured affinities (Kds, median ± SEM) for TF variants binding 5’-C CACGTG A-3’ and 5’-C AACGTG A-
3’ DNA sequences with outliers marked; dashed line indicates linear fit (r2 = 0.88). (C) Distribution of 
residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and candidate mutants 
listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves represent binding curve 
for an expected Kd for which TF and DNA mutations are purely additive. (E) Example additive mutants 
conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing experimental double-
mutant measurement to distribution of predictive additive Kd measurements. 
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Figure S26 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
G CACGTG C-3’and 5’-C CGCGTG C-3 oligonucleotides. (A) Identification of mutants statistically 
resolvable from background for 5’-C CGCGTG A-3’ binding measurements. (B) Pairwise comparisons of 
measured affinities (Kds, median ± SEM) for TF variants binding 5’-C CACGTG A-3’ and 5’-C CGCGTG A-
3’ DNA sequences with outliers marked; dashed line indicates linear fit (r2 = 0.76). (C) Distribution of 
residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and candidate mutants 
listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves represent binding curve 
for an expected Kd for which TF and DNA mutations are purely additive. (E) Example additive mutants 
conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing experimental double-
mutant measurement to distribution of predictive additive Kd measurements. 
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Figure S27 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
G CACGTG C-3’and 5’-C CATGTG C-3 oligonucleotides. (A) Identification of mutants statistically 
resolvable from background for 5’-C CATGTG A-3’ binding measurements. (B) Pairwise comparisons of 
measured affinities (Kds, median ± SEM) for TF variants binding 5’-C CACGTG A-3’ and 5’-C CATGTG A-
3’ DNA sequences with outliers marked; dashed line indicates linear fit to plotted data (r2 = 0.86). (C) 
Distribution of residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and 
candidate mutants listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves 
represent binding curve for an expected Kd for which TF and DNA mutations are purely additive. (E) 
Example additive mutants conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing 
experimental double-mutant measurement to distribution of predictive additive Kd measurements. 
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Figure S28 (Related to Figure 7). Double-mutant cycle analysis across the TF-DNA interface for the 5’-
G CACGTG C-3’and 5’-C CACGCG C-3 oligonucleotides. (A) Identification of mutants statistically 
resolvable from background for 5’-C CACGCG A-3’ binding measurements. (B) Pairwise comparisons of 
median affinities (± SEM) for TF mutants between 5’-CCACGTGA-3’ and 5’- CCACGCGA -3’ DNA 
sequences with outliers marked. Dashed line indicates linear fit to plotted data. Linear fit r2 = 0.69). (C) 
Distribution of residual Z-scores (standardized residuals) with magnitude Z-score ≥ 2 highlighted and 
candidate mutants listed. (D) Validation of mutants with Z-scores ≥ 2; boldened green dashed curves 
represent binding curve for an expected Kd for which TF and DNA mutations are purely additive. (E) 
Example additive mutants conforming to non-epistatic expectation. (F) Two-tailed T-test results comparing 
experimental double-mutant measurement to distribution of predictive additive Kd measurements. 
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Figure S29 (Related to Figure 7). Comparison of 13th arginine in DNA binding domains for Pho4 and 
SREBP1. (A) Pho4 bound to DNA (PDB: 1A0A) (left); DNA molecule with 13th arginine residue in Pho4 
(R263) shown as sticks making contacts across central nucleotides in E-box motif (right). Portion of DNA 
sequence containing E-box indicated by orange DNA backbone. (B) SREBP1 bound to DNA (PDB: 1AM9) 
(left); DNA molecule with 13th arginine residue in SREBP1 shown as sticks contacting DNA backbone 
(right). Conformations of arginine for both monomers are symmetric regardless of half-site identity. Portion 
of DNA sequence containing E-box indicated by orange DNA backbone. 
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